第四章学案21两角和与差的正弦余弦和正切公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

学案21两角和与差的正弦、余弦和正切公式导学目标:1.会用向量数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、变形应用.自主梳理1.(1)两角和与差的余弦cos(α+β)=_____________________________________________,cos(α-β)=_____________________________________________.(2)两角和与差的正弦sin(α+β)=_____________________________________________,sin(α-β)=_____________________________________________.(3)两角和与差的正切tan(α+β)=_____________________________________________,tan(α-β)=_____________________________________________.(α,β,α+β,α-β均不等于kπ+π2,k∈Z)其变形为:tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ).2.辅助角公式asinα+bcosα=a2+b2sin(α+φ),其中cosφ=,sinφ=,tanφ=ba,角φ称为辅助角.自我检测1.(2010·福建)计算sin43°cos13°-cos43°sin13°的结果等于()A.12B.33C.22D.322.已知cosα-π6+sinα=435,则sinα+7π6的值是()A.-235B.235C.-45D.453.函数f(x)=sin2x-cos2x的最小正周期是()A.π2B.πC.2πD.4π4.(2011·台州月考)设0≤α2π,若sinα3cosα,则α的取值范围是()A.π3,π2B.π3,πC.π3,4π3D.π3,3π25.(2011·广州模拟)已知向量a=(sinx,cosx),向量b=(1,3),则|a+b|的最大值为()A.1B.3C.3D.9探究点一给角求值问题(三角函数式的化简、求值)例1求值:(1)[2sin50°+sin10°(1+3tan10°)]2sin280°;(2)sin(θ+75°)+cos(θ+45°)-3·cos(θ+15°).变式迁移1求值:(1)2cos10°-sin20°sin70°;(2)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).探究点二给值求值问题(已知某角的三角函数值,求另一角的三角函数值)例2已知0βπ4α3π4,cosπ4-α=35,sin3π4+β=513,求sin(α+β)的值.变式迁移2(2011·广州模拟)已知tanπ4+α=2,tanβ=12.(1)求tanα的值;(2)求sinα+β-2sinαcosβ2sinαsinβ+cosα+β的值.探究点三给值求角问题(已知某角的三角函数值,求另一角的值)例3已知0απ2βπ,tanα2=12,cos(β-α)=210.(1)求sinα的值;(2)求β的值.变式迁移3(2011·岳阳模拟)若sinA=55,sinB=1010,且A、B均为钝角,求A+B的值.转化与化归思想的应用例(12分)已知向量a=(cosα,sinα),b=(cosβ,sinβ),|a-b|=255.(1)求cos(α-β)的值;(2)若-π2β0απ2,且sinβ=-513,求sinα的值.【答题模板】解(1)∵|a-b|=255,∴a2-2a·b+b2=45.[2分]又∵a=(cosα,sinα),b=(cosβ,sinβ),∴a2=b2=1,a·b=cosαcosβ+sinαsinβ=cos(α-β),[4分]故cos(α-β)=a2+b2-452=2-452=35.[6分](2)∵-π2β0απ2,∴0α-βπ.∵cos(α-β)=35,∴sin(α-β)=45.[8分]又∵sinβ=-513,-π2β0,∴cosβ=1213.[9分]故sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=45×1213+35×-513=3365.[12分]【突破思维障碍】本题是三角函数问题与向量的综合题,唯一一个等式条件|a-b|=255,必须从这个等式出发,利用向量知识化简再结合两角差的余弦公式可求第(1)问,在第(2)问中需要把未知角向已知角转化再利用角的范围来求,即将α变为(α-β)+β.【易错点剖析】|a-b|平方逆用及两角差的余弦公式是易错点,把未知角转化成已知角并利用角的范围确定三角函数符号也是易错点.1.转化思想是实施三角变换的主导思想,变换包括:函数名称变换,角的变换,“1”的变换,和积变换,幂的升降变换等等.2.变换则必须熟悉公式.分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.3.恒等变形前需已知式中角的差异,函数名称的差异,运算结构的差异,寻求联系,实现转化.4.基本技巧:切割化弦,异名化同,异角化同或尽量减少名称、角数,化为同次幂,化为比例式,化为常数.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·佛山模拟)已知sinα+π3+sinα=-435,则cosα+2π3等于()A.-45B.-35C.35D.452.已知cosα+π6-sinα=233,则sinα-7π6的值是()A.-233B.233C.-23D.233.(2011·宁波月考)已知向量a=sinα+π6,1,b=(4,4cosα-3),若a⊥b,则sinα+4π3等于()A.-34B.-14C.34D.144.函数y=sinx+cosx图象的一条对称轴方程是()A.x=5π4B.x=3π4C.x=-π4D.x=-π25.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则C的大小为()A.π6B.56πC.π6或56πD.π3或23π题号12345答案二、填空题(每小题4分,共12分)6.(2010·重庆)如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为αi(i=1,2,3),则cosα13cosα2+α33-sinα13·sinα2+α33=________.7.设sinα=35π2απ,tan(π-β)=12,则tan(α-β)=________.8.(2011·惠州月考)已知tanα、tanβ是方程x2+33x+4=0的两根,且α、β∈-π2,π2,则tan(α+β)=__________,α+β的值为________.三、解答题(共38分)9.(12分)(1)已知α∈0,π2,β∈π2,π且sin(α+β)=3365,cosβ=-513.求sinα;(2)已知α,β∈(0,π),且tan(α-β)=12,tanβ=-17,求2α-β的值.10.(12分)(2010·四川)(1)①证明两角和的余弦公式C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;②由C(α+β)推导两角和的正弦公式S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.(2)已知△ABC的面积S=12,AB→·AC→=3,且cosB=35,求cosC.11.(14分)(2011·济南模拟)设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,3sin2x),x∈R.(1)若函数f(x)=1-3,且x∈-π3,π3,求x;(2)求函数y=f(x)的单调增区间,并在给出的坐标系中画出y=f(x)在区间[0,π]上的图象.答案自主梳理1.(1)cosαcosβ-sinαsinβcosαcosβ+sinαsinβ(2)sinαcosβ+cosαsinβsinαcosβ-cosαsinβ(3)tanα+tanβ1-tanαtanβtanα-tanβ1+tanαtanβ2.aa2+b2ba2+b2自我检测1.A2.C3.B4.C5.C课堂活动区例1解题导引在三角函数求值的问题中,要注意“三看”口诀,即(1)看角,把角尽量向特殊角或可计算的角转化,合理拆角,化异为同;(2)看名称,把算式尽量化成同一名称或相近的名称,例如把所有的切都转化为弦,或把所有的弦都转化为切;(3)看式子,看式子是否满足三角函数的公式.如果满足则直接使用,如果不满足需转化一下角或转换一下名称,就可以使用.解(1)原式=2sin50°+sin10°·1+3sin10°cos10°·2sin80°=2sin50°+sin10°·cos10°+3sin10°cos10°·2sin80°=2sin50°+2sin10°·12cos10°+32sin10°cos10°·2cos10°=2sin50°+2sin10°sin40°cos10°·2cos10°=2sin60°cos10°·2cos10°=22sin60°=22×32=6.(2)原式=sin[(θ+45°)+30°]+cos(θ+45°)-3·cos[(θ+45°)-30°]=32sin(θ+45°)+12cos(θ+45°)+cos(θ+45°)-32cos(θ+45°)-32sin(θ+45°)=0.变式迁移1解(1)原式=2cos30°-20°-sin20°sin70°=3cos20°+sin20°-sin20°sin70°=3cos20°sin70°=3.(2)原式=tan[(π6-θ)+(π6+θ)][1-tan(π6-θ)·tan(π6+θ)]+3tan(π6-θ)tan(π6+θ)=3.例2解题导引对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应分类讨论.应注意公式的灵活运用,掌握其结构特征,还要学会拆角、拼角等技巧.解cosπ4-α=sinπ4+α=35,∵0βπ4α3π4,∴π2π4+απ,3π43π4+βπ.∴cosπ4+α=-1-sin2π4+α=-45,cos3π4+β=-1-sin23π4+β=-1213.∴sin[π+(α+β)]=sinπ4+α+3π4+β=sinπ4+αcos3π4+β+cosπ4+αsin3π4+β=35×-1213-45×513=-5665.∴sin(α+β)=5665.变式迁移2解(1)由tanπ4+α=2,得1+tanα1-tanα=2,即1+tanα=2-2tanα,∴tanα=13.(2)sinα+β-2sinαcosβ2sinαsinβ+cosα+β=sinαcosβ+cosαsinβ-2sinαcosβ2sinαsinβ+cosαcosβ-sinαsinβ=-sinαcosβ-cosαsinβcosαcosβ+sinαsinβ=-sinα-βcosα-β=-tan(α-β)=-tanα-tanβ1+tanαtanβ=-13-121+13×12=17.例3解题导引(1)通过求角的某种三角函数值来求角,在选取函数时,遵循以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为-

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功