有限元复习一、选择题(每题1分,共10分)二、判断题(每空1分,共10分)三、填空题(每空1分,共10分)三、简答题(共44分)共6题四、综述题(共26分)两题一.基本概念1.平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线性与非线性问题平面应力问题(1)均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布在六个应力分量中,只需要研究剩下的平行于XOY平面的三个应力分量,即xyxyyx、、(000zzxxzzyyz,,)。一般0z,z并不一定等于零,但可由x及y求得,在分析问题时不必考虑。于是只需要考虑xyxy、、三个应变分量即可。平面应变问题(1)纵向很长,且横截面沿纵向不变。(2)载荷平行于横截面且沿纵向均匀分布0zyzzx只剩下三个应变分量xyxy、、。也只需要考虑xyxy、、三个应力分量即可轴对称问题物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。在轴对称问题中,周向应变分量是与r有关。板壳问题一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。杆梁问题杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。平面(应力应变)问题与板壳问题的区别与联系平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化。板壳问题的弹性体受垂直于板面的力的作用,板将变成有弯有扭的曲面。线性问题/非线性问题线性问题:基于小变形假设,应力与应变方程、应力与位移关系方程、平衡方程都是线性的。非线性问题:材料非线性(非线性弹性、非线性弹塑性),几何非线性(大变形大应变如金属橡胶,小应变大位移如薄壁结构)2.不同类型单元的节点自由度的理解:3.有限元法的基本思想与有限元分析的基本步骤(5步)有限元法的基本思想:离散、分片插值;其中离散的思想吸收了差分法的启示。有限元分析的基本步骤:数学建模(问题分析),结构离散(第一次近似),单元分析(位移函数,单刚方程)(第二次近似),整体分析与求解(总刚度方程,引入约束,解方程组求节点位移,根据节点位移求应力),结果分析及后处理。4.里兹法的基本思想及与有限元法区别里兹法的基本思想:先根据描述问题的微分方程和相应定解条件构造等价的单元类型节点数节点自由度杆单元21梁单元23平面单元32平面四边形42轴对称问题32板壳单元43四面体单元43泛函变分形式,然后在整个求解区域上假设一个试探函数(或近似函数),通过求解泛函极值来获得原问题的近似解。与有限元法的区别:里兹法是整体场函数用近似函数代替,有限元法是离散求解域,分片连续函数来近似整体未知场函数。5.有限元法的基本定义(节点、单元、节点力、节点载荷)•单元:即原始结构离散后,满足一定几何特性和物理特性的最小结构域•节点:单元与单元间的连接点。•节点力:单元与单元间通过节点的相互作用力•节点载荷:作用于节点上的外载(等效)。6.位移函数的构造方法及满足的基本条件构造方法:(1)广义坐标法,按照帕斯卡三角形选择多项式,项数多少由单元的自由度数决定。(2)插值函数法,表示为形函数和节点位移的乘积表示。基本条件:(1)位移函数在单元节点的值应等于节点位移(即单元内部是连续的);(2)所选位移函数必须保证有限元的解收敛于真实解。7.位移函数的收敛性条件(协调元、非协调元)及单元协调性的判断位移函数的收敛性条件(1)位移函数应包含刚体位移(2)位移函数应包含常量应变(反映单元的常应变状态)(3)位移函数在单元内连续,在单元之间的边界上要协调满足1和2称为完备单元,满足1,2,3称为协调单元。单元协调性的判断以3节点三角形单元为例,位移分量在每个单元中都是坐标的线性函数的话,在公共边界上也会是线性变化的,那么相邻单元在公共边界上的任意一点都具有相同的位移,也就是协调单元。有限元法中,假设一种位移函数近似表达单元内部的真实位移分布,该位移函数可表示为位移函数和节点位移的线性插值。8.有限元解的性质有限元解具有下限性质,即有限元的解小于实际的精确解。这是因为实际结构本来是具有无限自由度的,当用有限元求解时,结构被离散为有限个单元的集合后,便只有有限个自由度了。由无限自由度变为有限自由度可以认为是对真实位移函数增加了约束,限制了结构的变形能力,从而导致结构的刚度增大、计算的位移减小。9.虚功原理、最小势能原理及变分法(里兹法)虚功原理:在力的作用下处于平衡状态的体系,当发生与约束条件相符合的任意微小的虚刚体位移时,体系上所有的主动力在虚位移上所作的总功(各力所作的功的代数和)恒等于零。最小势能原理:表明在满足位移边界条件的所有可能位移中,实际发生的位移使弹性体的势能最小。10.形函数特性1)形函数Ni为x、y坐标的函数,与位移函数有相同的阶次。2)形函数Ni在i节点处的值等于1,而在其他节点上的值为0。3)单元内任一点的形函数之和恒等于1。4)形函数的值在0-1间变化。11.单元刚度矩阵的性质及元素的物理意义单元刚度矩阵的性质特点:(1)对称性(2)奇异性,|K|=0(3)主对角线元素恒为正值(4)奇偶行元素之和分别为零(各行或各列元素之和为零)物理意义:单元刚阵[K]的物理意义是单元受节点力作用后抗变形的能力。其中分块矩阵[Kij]的物理意义为:当在j节点处产生单位位移而其他节点位移为零时,在i节点上需要作用力的大小。其中元素Kij表示在第j号自由度上产生单位位移时,其他自由度位移为零时,在i号自由度上所需要施加的力的大小。单元刚度矩阵的元素表示该单元的各节点沿坐标方向发生单位位移时引起的节点力,它决定于该单元的形状、大小、方位和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平行移动而改变。12.边界条件处理(载荷等效移置集中力/均布力/线性分布力边界位移约束处理固定/指定位移等)载荷等效移置连续弹性体离散为单元组合体时,为简化受力情况,需把弹性体承受的任意分布的载荷都向节点移置(分解),而成为节点载荷。载荷移置的原则:能量等效(或静力等效原则),即单元的实际载荷与移置后的节点载荷在相应的虚位移上所做的虚功相等。集中力,移置到两端节点,使得F1L1=F2L2,F1+F2=F均布力,移置到两端节点,F1=F2=0.5qL线性分布力,F1=1/30.5qL,F2=2/30.5qL边界位移约束一.绝对位移约束刚性支座(活动铰支,固定铰支,固接支座)——固定位移弹性支座(线弹性制作,非线性支座)——可变位移强迫约束——指定位移用载荷等效,装配应力+整体应力二.相对位移约束(如两接触面)1.约束等式2.耦合约束(连接重合节点,模拟滑动边界连接,施加周期对称边界条件)常见的位移约束问题处理约束不足的处理(1)利用对称性引进约束(取1/n后,在对称面上施加位移约束)(2)转换载荷为位移约束(受平衡载荷作用,将一部分载荷用位移约束代替)(3)人为增加约束(约束点应尽量远离重要部位,约束点变形要相对小)其他,杆离散为多个杆单元时,须在连接节点增加约束,只允许产生轴向位移。轴对称结构,施加轴向约束。过约束的处理有时需要施加过约束,有时需要释放过约束。引入位移边界条件是为了消除有限元整体刚度矩阵K的奇异性。13.总体刚度矩阵组装原则及总刚阵特点总体刚度矩阵组装原则:1.在整体离散结构变形后,应保证各单元在节点处仍然协调地相互连接,即在该节点处所有单元在该节点上有相同位移。2.整体离散结构各节点应满足平衡条件。即环绕每个节点的所有单元作用其上的节点力之和应等于作用于该节点上的节点载荷Ri。总刚度矩阵特点:除了具有单元刚阵的特点外,还有1.稀疏性,是指总刚矩阵的绝大多数元素都是零,非零子块只占一小部分。2.带状性,是指总刚矩阵中非零子块集中在主对角线两侧,呈带状分布。(附,半带宽B=(相关节点号最大差值+1)*节点自由度数)二建模与结果分析1.影响有限元分析精度和成本的因素影响有限元解的误差:1)离散误差2)位移函数误差分析精度:A、单元阶次B、单元数量C、划分形状规则的单元D、建立与实际相符的边界条件E、减小模型规模F、避免出现“病态”方程组,当总刚矩阵元素中各行或各列的值相差较大时,则总刚近似奇异。2.有限元模型的基本构成(节点数据、单元数据、边界条件等)节点数据:节点编号、坐标值、坐标参考系代码、位移参考系代码、节点数量、单元编号单元数据:单元节点、编号单元、材料特性码、单元物理特性值码、单元截面特性、相关几何数据边界条件数据:位移约束数据、载荷条件数据、热边界条件数据、其他边界条件数据归纳起来,网格划分生成节点和单元的过程主要包括定义单元属性、定义网格生成控制和生成网格三个步骤。3.有限元建模的常用方法理解及应用(如细节处理、分步计算、局部计算、子结构法、对称性简化等)细节处理也称为小特征处理,即删除或抑制对结构力学性能影响不大的细小结构。分步计算,如果结构的局部存在相对尺寸非常小的细节,且又不能进行细节处理,可采用分步计算来控制有限元模型的规模。局部处理就是从所建立的力学模型中抽取一部分出来进行分析,该部分通常是研究者最关心的的危险区域。子结构法是先将大型结构分解为若干个结构区域,每个区域作为一个子结构。子结构被进一步细分为单元,并人为地将子结构上的节点划分为边界节点和内部节点两类.对称性简化,对称性分为反射对称和周期对称(1)反射对称,受对称载荷作用则对称面上的位移条件为①垂直于对称面的移动位移分量为零。②绕平行于对称面的两相互垂直的轴的转动位移分量均为零。(2)反射对称,受反对称载荷作用则对称面上的位移条件为①平行于对称面的移动位移分量为零;②绕方向矢量垂直于对称面的轴的转动位移分量为零。(3)对称结构受任意载荷作用(迭加原理)(4)周期对称的位移条件,周期对称边界上的对应点有相同的位移状态4.边界约束条件的处理(见前)。5.单元类型选择的一般原则选择原则:同一问题所选单元应使计算精度高、收敛速度快、计算量小。1、杆系结构:a、铰接连接时,选杆单元;b、刚性连接时,选刚架单元。2、平面结构:a、外载平行于平面内,选平面单元b、外载不在平面内,选弯曲板壳单元3、空间结构:a、结构和受力具有轴对称性,选轴对称单元;b、一般实体,选三维实体单元。三.其他1.有限单元法首先求出的解是位移,单元应力、应变可由它求得。2.模型简化力学模型简化就是借助对称原理、圣维南原理、叠加原理、等效准则等,在保证考察问题的精度不受影响或具有足够近似精度的要求下,对所研究问题的力学模型进行简化,从而达到减小计算时间和存储空间的目的。常用方法有降维处理、等效变换、对称性利用、组合分析、场耦合分析。3.对称性利用注意事项(1)不仅结构的形状、载荷要对称,还要求位移约束也对称(2)若对称面上作用有载荷,则应取载荷的1/2进行分析(3)若对称面上存在板或梁,这时板或梁单元的刚度应取整个单元刚度的1/2(4)用对称面剖分结构时,应尽量使剖分面不在结构的最大应力位置。其他略。4.整体刚度方程中的约束条件引入引入约束的方法常有:1)降阶法(打乱[K]{R}的储存顺序)2)对角元素置1法3)对角元素乘大数法四ANSYS操作部分1ANSYS有两种模式:一种是图形交互模式,另一个是命令流模式。2ANSYS软件的基本分析步骤ANSYS软件基本分析步骤大致可分为三个模块:前处理、加载求解和后处理前处理(1)建立有限元模型所需输入的资料。如节点、坐标资料、元素内节点排列次序。(2)材料属性