第四章阿基米德的求圆面积定理(公元前约225年)阿基米德生平从欧几里得到我们将要介绍的下一位伟大数学家——叙拉古城举世无双的阿基米德(公元前287—212年)之间,经历了两三代人之久。阿基米德在其辉煌的数学生涯中,将数学疆界从欧几里得时代向前推进了一大步。实际上,此后将近两千年,数学界再没有出现过像阿基米德这样伟大的数学家。我们有幸了解一些阿基米德的生平,但因为历经沧桑,其细节的真伪往往受到怀疑。同时,他的一些数学著作也有幸流传下来,而且有他自己的注解。所有这些资料,为我们描绘了这位曾经统治古代数学界,受人尊敬,但又有点儿古怪的数学天才的一生。阿基米德出生于西西里岛的叙拉古城。据说,他的父亲是一位天文学家,阿基米德从小就萌发了研究宇宙的兴趣,终生乐此不疲。阿基米德青年时代也曾到过埃及求学,并在亚历山大图书馆学习。这里曾是欧几里得治学之处,阿基米德自然也会受到欧几里得的影响,这一点在阿基米德的数学著作中可以很清楚地看出。据说,阿基米德在尼罗河谷期间,曾发明了所谓“阿基米德螺旋水车”,这种装置可以用来把水从低处提到高处。有趣的是,这一发明,直至今日仍在使用。他的发明证明了阿基米德的双重天才:他既可以脚踏实地地研究实际问题,又能够在最抽象、最微妙的领域中探索。亚历山大显然适合发挥他的才干,但阿基米德还是返回了他的故乡叙拉古城,据我们所知,就在那里度过了他的后半生。叙拉古城虽然十分闭塞,但阿基米德一直保持着与全希腊,特别是与亚历山大学者们的通信联系。这种书信往来,使得阿基米德的许多著作得以保存。阿基米德能够在一段时间里非常专注地研究任何问题,更加提高了他令人敬仰的数学才能。他在进行研究时,常常会忽略日常的生活问题。我们从普卢塔克的著作中得知,阿基米德“……忘记了吃饭,甚至忘记了他自己的存在,有时,人们会强制他洗浴或敷油,他都浑然不知,他会在火烧过的灰烬中,甚至在身上涂的油膏中寻找几何图形,完全进入了一种忘我的境界,更确切些说,他已如醉如痴地沉浸在对科学的热爱之中。”这一段文字描绘了这位数学家心不在焉的形象,对于阿基米德来说,整洁似乎已与他无关。当然,有关阿基米德“心不在焉”的故事,最著名的还是关于叙拉古城国王希伦的王冠的故事。国王怀疑金匠用一些合金偷换了他王冠上的黄金,就请阿基米德来测定王冠的真正含金量。正如故事所说,阿基米德一直解不开这道难题,有一天(在他少有的一次洗浴时),他忽然找到了答案。他兴奋得从浴盆里跳出来,跑到叙拉古城的大街上,边跑边欢呼:“我找到啦!我找到啦!”但遗憾的是,他完全沉浸在他的新发现之中,竟然忘记了还没穿衣服。很难想象街上的人们看见他一丝不挂地招摇过市,会说些什么。这个故事也许是杜撰的,但阿基米德发现流体静力学的基本原理却是千真万确的。他留给我们一篇题为《论浮体》的论文,阐述了他在这一方面的思想。除此以外,他还发展了光学,创立了机械学,他不仅发明了水泵,而且还发现了杠杆、滑轮和复式滑轮的工作原理。普卢塔克记叙过这样一个故事:多疑的希伦国王怀疑这些简单机械装置的能力,就请阿基米德实际演习一下。阿基米德以一种戏剧般的方式满足了国王的要求,他选择了国王一艘最大的船只,“……如果不花费巨大人力,是无法把这艘大船拖离船坞的,况且,船上还满载乘客和货物。阿基米德坐得远远的,手里只握住滑轮的一端,不慌不忙地慢慢拉动绳索,船就平平稳稳地向前滑动,就像在大海里航行一样。”不用说,国王对此留下了深刻印象。或许,他从这件事中察觉了这位天才科学家的某种宝贵才能,遇有危难关头,这样的工程天才可以派上用场。公元前212年,罗马人在马塞卢斯率领下,进攻叙拉古城,危难关头来临。面对罗马的威胁,阿基米德奋起保卫自己的家园,他设计了许多杀伤力很强的武器。他的这项事业,或许只能称为个体军工企业。我们继续引用普卢塔克的《马塞卢斯生平》一书,这本书是这位伟大的罗马传记作家在事件发生后约300年时写的。普卢塔克虽然是在为马塞卢斯作传,但他对阿基米德的钦敬心情却显而易见。这些描述使我们看到了一个非常引人,栩栩如生的阿基米德形象。“马塞卢斯率领大军向叙拉古城进发,”普卢塔克写道,“并在离城不远处安营扎寨,又派使者进城劝降。”但叙拉古城人拒绝投降,马塞卢斯便凭借陆上的兵士和海上60艘装备精良的战船猛扑叙拉古城。马塞卢斯“……有备而来,历年征战,声威赫赫”,但事实却证明他敌不过阿基米德和他凶狠的守城器械。据普卢塔克记载,罗马军团进逼城垣,自信战无不胜。“但是,阿基米德开始摆弄他的器械,他对地面部队启动各种弹射武器,无数大小石块带着惊人的呼啸,猛烈地倾泻下来;乱石之中,无人能够站立,士兵乱了阵脚,纷纷被击中,成堆倒下。”而罗马水师的情况也不见佳,“……从城墙上伸出了长长的杆子,在船上方投下重物,将一些船只击沉;而其他船只则被一只只铁臂或铁钩钩住船头,提升起来……然后又船尾朝下,投入海底;同时,另一些船只在其引擎的拖动下,团团乱转,最后撞碎在城下突起的尖峭岩石上,船上的士兵死伤惨重。”这种巨大的伤亡,用普卢塔克的话说,是“一件可怕的事情”,人们不会不同意他的说法。在这种情况下,马塞卢斯认为最好还是先撤退。他撤回了他的地面和海上部队,重新部署。罗马人经过认真研究,决定进行夜袭。他们以为,只要在夜幕掩盖下,贴近城墙,阿基米德的武器就没有用武之地了。然而,罗马人再次遭到了意外的打击。原来,不知疲倦的阿基米德已经为应付这种偷袭作好了充分的安排。罗马士兵一靠近城防,“石头就劈头盖脸地砸下来,同时,城内又射出飞箭”。结果,罗马人失魂落魄,不得不再次撤退,但又受到阿基米德远程武器的攻击,“损兵折将”。这次,自负的罗马军团“看到无形的武器给他们造成的重大伤亡,开始以为他们是在与诸神作战。”或许,说马塞卢斯的军队士气低落亦不为过。他希望他这支受到重创的军队能够重振勇气,继续进攻,但是,以前自认为无敌于天下的罗马人却不愿再打了。相反,士兵们“只要看到城墙上伸出一小段绳索或一片木头,就立时大哗,以为阿基米德又对他们使用什么武器了,并转身落荒而逃。”马塞卢斯明白,小心即大勇,于是,他放弃了直接进攻。马塞卢斯想以断粮逼迫叙拉古城人投降,所以,罗马军团开始长期围困叙拉古城。时间一天天过去,军事态势没有什么变化。后来,在狄安娜节日期间,叙拉古城居民“完全放松了警惕,他们纵酒狂欢”,松懈下来。一直在窥测时机的罗马人乘其不备,一举攻破了防守懈怠的一段城防,怀着一腔怨毒涌入叙拉古城。据说,马塞卢斯环视着这座美丽的城市,为他的士兵不可避免地要对叙拉古城泄怒施暴雨落下了眼泪。的确,据历史记载,罗马人对叙拉古城人的做法完全不亚于他们在66年后对迦太基人的暴行。但是,阿基米德的死使马塞卢斯极为悲伤,因为他对这位天才的对手至为尊敬。据普卢塔克记载:“……也许是命该如此,(阿基米德)正在专心研究几何图形,他全神贯注地思考,完全没有注意到罗马人的入侵,也没有注意到城市的陷落。正在他聚精会神地研究和思考的时候,没想到一个士兵前来,命令他立刻去见马塞卢斯;但阿基米德在没有解出他的几何证明题之前,拒绝跟他走。士兵大怒,拔出佩剑,一剑刺死了阿基米德。”就这样,阿基米德走完了他的一生,他死了,像他活着时一样,执着于他所喜爱的数学。我们可以认为他是一位科学研究的殉难者,也可以认为他是自己无暇它顾的牺牲者。总之,古往今来,数学家不知有多少,但像阿基米德这样结局者,却是绝无仅有的。阿基米德尽管发明了许多利器和工具,但他真正喜爱的还是纯数学。与他发现的美妙定理相比,他的杠杆、滑轮和石弩都不过是雕虫小技。我们还是引用普卢塔克的话来说明:“阿基米德具有高尚的情操,深刻的灵魂和丰富的科学知识,虽然这些发明使他赢得了超乎常人的名望,但他并未屈尊留下任何有关这些发明的著述;相反,他却鄙薄工程学这一行当,以及任何仅仅出于实用和赢利目的的技艺,他将他的全部情感与理想寄托于与尘世无涉的思索之中。”数学是阿基米德的最大遗产。在这一领域,阿基米德无可争议地被公认为古代最伟大的数学家。他的那些幸存下来的十几部著作及一些零散的文稿是最高质量的。其逻辑上的严谨与复杂,令后人惊叹不已。毫不奇怪,他一定非常精通欧几里得的理论并不愧为欧多克索斯穷竭法的大师;借用牛顿的名言,阿基米德一定是站在巨人的肩上。但是,过去的影响虽然很大,却不能充分解释阿基米德带给数学学科的巨大发展。伟大的定理:求圆面积公元前约225年,阿基米德发表了一篇题为《圆的测定》的论文,这篇论文中的第一个命题对圆面积作了十分透彻的分析。但是,在我们讲述这一不朽之作之前,我们有必要先介绍一下在阿基米德探讨这一问题时,有关圆面积问题的发展状况。当时的几何学家已知,不论圆的大小如何,圆的周长与直径之比总是一定的。用现代术语,我们可以说如图4.1所示,公式中的C代表周长,D代表直径。换句话说,圆的周长与直径之比是一个常数,现代数学家定义这一比率为π。(注意:古希腊人在这里不使用符号。)因此,公式正是表明了常数π的定义,即两个长度(圆的周长与直径)的比。那么,圆的面积又如何呢?我们已经知道,《原本》的命题Ⅻ.2证明了两个圆的面积之比等于两圆直径的平方比,因此,圆面积与其直径的平方比是一个常数。用现代术语说,欧几里得证明了常数k的存在,因而至此,一切顺利。但是,这两个常数之间相互有什么关系呢?也就是说,人们是否能够发现在这“一维”常数π(表示圆周长与直径的关系)与“二维”常数k(表示面积与直径的关系)之间存在着一种简单的联系?显然,欧几里得没有发现这种联系。然而,阿基米德在其短小精炼的论文《圆的测定》中证明了有关结果,而这相当于现代涉及π的求圆面积公式。在证明中,他在圆周长(及因此产生的π)与圆面积之间建立了重要联系。他的证明需要两个非常直接的初步定理和一种非常复杂的逻辑方法,称为双重归谬法(反证法)。我们先来看这两个初步定理。一个是关于正多边形面积的定理,正多边形的中心为O,周长为Q,边心距为h。这里,边心距是指从多边形的中心引向任何一条边的垂线长度。证明设正多边形(图4.2)有n条边,每条边长b。作从O到每个顶点的连线,将多边形划分为n个全等三角形,每个三角形的高为h(边因为(b+b+……+b)是周长。证讫。简单明快。阿基米德的第二个定理当时也非常著名,而且显然是不证自明的。这一定理称,如果给我们一个已知圆,我们可以作圆内接正方形;欧几里得在命题IV.6中已证明过这种作图。当然,正方形的面积肯定小于其外接圆的面积。我们通过平分正方形的每条边,就可以确定圆内接正八边形的顶点位置。当然,正八边形比正方形更接近于圆的面积。如果我们再平分八边形的每条边,就可以得到圆内接正16边形,这当然比八边形又更接近圆的面积。这一过程可以无限继续。实际上,这种方法的实质就是前面曾提到过的著名的欧多克索斯穷竭法。显然,内接正多边形的面积永远不会等于圆的面积;不论内接正多边形产生多少条边,都永远小于圆的面积。但是(这是穷竭法的关键),如果预先给定任一面积,不论其多小,我们都能作出一个内接正多边形,而使圆面积与其内接正多边形的面积之差小于这一预作一个内接正多边形,而使这一正多边形也许有几百条边或几千条边,但这并不重要,重要的是它存在。外切正多边形也具有类似的规律。我们可以用一句话来概括这两种正多边形的规律,即,对于任何已知圆,我们都可以作出它的内接正多边形或外切正多边形,其面积可任意接近圆的面积。正是这句“可任意接近”成为了阿基米德成功的关键。以上就是阿基米德的两个初步命题。下面,我们有必要就他论证两个面积相等时所采用的逻辑方法作一个简单的介绍。在某种意义上,这种逻辑方法比我们以往所见到的任何方法都更复杂,或者说,至少更曲折。例如,我们可以回想一下,欧几里得是如何证明直角三角形斜边上正方形的面积等于两条直角边上正方形面积之和的:他直接推理,证明了问题中的面积相等。他的证明方法虽然非常巧妙,却只是正面论证。然而,阿基米德在论证更为复杂的圆面积问题时,采用了一种间接证明的方法。他认为,任何两个量A与B,一定只能属于下列三种情况中的一种:A<B,或A>B,或A=B。为了证明A=B,阿基米德首先假设A<B,并由此推导出逻辑