相似三角形存在性问题1.如图,二次函数图象的顶点坐标为C(4,-3),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)点P在y轴上,且使得△PAC的周长最小,求:①点P的坐标;②△PAC的周长和面积;(3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.解:(1)设二次函数的解析式为y=a(x-4)2-3(a≠0),且A(x1,0),B(x2,0).∵y=a(x-4)2-3=ax2-8ax+16a-3∴x1+x2=8,x1x2=16-a3.∴AB2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-a3)=36,∴a=93.∴二次函数的解析式为y=93(x-4)2-3.(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求.令y=0,得93(x-4)2-3=0,解得x1=1,x2=7.∴A(1,0),B(7,0).∴OA=1,∴OA′=1.设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC=3.∵△A′OP∽△ADC,∴DCOP=ADOA,即3OP=51,∴OP=53.∴P(0,-53).②∵A′C=22DCDA=22)3(5=72AC=22DCAD=22)3(3=32∴△PAC的周长=PA+PC+AC=A′C+AC=72+32.S△PAC=S△A′AC-S△A′AP=21A′A(DC-OP)=21×2×(3-53)=534.(3)存在.∵tan∠BAC=ADDC=33,∴∠BAC=30°.同理,∠ABC=30°,∴∠ACB=120°,AC=BC.①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°.如图2,过点Q1作Q1H⊥x轴于H,则Q1H=AQ1·sin60°=6×23=33,HA=AQ1·cos60°=6×21=3.HO=HA-OA=3-1=2.∴点Q1的坐标为(-2,33).把x=-2代入y=93(x-4)2-3,得y=93(-2-4)2-3=33.∴点Q1在抛物线上.②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10,33).同样,点Q2也在抛物线上.③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.综上所述,在x轴上方的抛物线上存在点Q1(-2,33)和Q2(10,33),使得以Q、A、B三点为顶点的三角形与△ABC相似.2.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连结AC、BC.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)由题意得cbacbaccba244163039解得a=-33,b=-332,c=3.···················································3分(2)由(1)知y=-33x2-332x+3,令y=0,得-33x2-332x+3=0.解得x1=-3,x2=1.∵A(-3,0),∴B(1,0).又∵C(0,3),∴OA=3,OB=1,OC=3,∴AB=4,BC=2.∴tan∠ACO=OCOA=3,∴∠ACO=60°,∴∠CAO=30°.同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°.∴△ABC是直角三角形.又∵BM=BN=t,∴△BMN是等边三角形.∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°.∴Rt△PNC∽Rt△ABC,∴NCPN=BCAB.由题意知PN=BN=t,NC=BC-BN=2-t,∴tt2=24.∴t=34.·····················································4分∴OM=BM-OB=34-1=31.如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°=34×23=332.yOxCNBPMAyOxCNBPMA图1HMH=PM·cos60°=34×21=32.∴OH=OM+MH=31+32=1.∴点P的坐标为(-1,332).·······················································6分(3)存在.由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也是直角三角形.∵二次函数y=-33x2-332x+3的图象的对称轴为x=-1.∴点P在对称轴上.∵PN∥x轴,∴PN⊥对称轴.又∵QN≥PN,PN=BN,∴QN≥BN.∴△BNQ不存在以点Q为直角顶点的情形.①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,且QN>PN,∠MNQ=30°.∴∠PNQ=30°,∴QN=o30cosPN=2334=938.∴BNQN=34938=332.∵BCAC=tan60°=3,∴BNQN≠BCAC.∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似.···········7分②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°.∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°.∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM.∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°.∵∠BNM=60°,∴∠QBN=90°.∵∠CAO=30°,∠ACB=90°.∴△BNQ∽△ABC.··············································8分∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC.设对称轴与x轴的交点为D.∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP.∴DQ=PD,∴点Q与点P关于x轴对称.∴点Q的坐标为(-1,-332).············································································9分综合①②得,在抛物线的对称轴上存在点Q(-1,-332),使得以B,N,Q为顶点的三角形与△ABC相似.·····························································································································10分3.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).(1)求a的值及直线AC的函数关系式;(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.①求线段PM长度的最大值;②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2.······································1分∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x2-4x+6令-2(x+3)(x-1)=0,得x1=-3,x2=1∵点A在点B右侧,∴A(1,0),B(-3,0)设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得620=+=+-bkbk解得22==-bk∴直线AC的函数关系式为y=-2x+2.··········································3分(2)①设P点的横坐标为m(-2≤m≤1),则P(m,-2m+2),M(m,-2m2-4m+6).··································4分∴PM=-2m2-4m+6-(-2m+2)=-2m2-2m+4=-2(m+21)2+29∴当m=-21时,线段PM长度的最大值为29.·······························6分②存在M1(0,6).············································································································7分M2(-41,855).·····································································································9分点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考)ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△ANP∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x2-4x+6得-2x2-4x+6=6,∴x=-2(舍去)或x=0∴M1(0,6)(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴重合,点N与原点O重合)ⅱ)如图2,当C为直角顶点时,设M(m,-2m2-4m+6)(-2≤m≤1)过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D则△CMP∽△NAP又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD∴ODCH=OAMH∵C(-2,6),∴CH=m+2,MH=-2m2-4m+6-6=-2m2-4m在y=-2x+2中,令x=0,得y=2∴D(0,2),∴OD=2∴22m=1422mm整理得4m2+9m+2=0,解得m=-2(舍去)或m=-41当m=-41时,-2m2-4m+6=(-41)2-4×(-41)+6=855∴M2(-41,855)4.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出....此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.解:(1)由题意知Rt△△AOC∽Rt△COB,∴OCOA=OBOC.∴OC2=OA·OB=OA(AB-OA),即22=OA(5-OA).∴OA2-5OA+4=0,∵OA<OB,∴OA=1,OB=4.···················2分∴A(-1,0),B(4,0),C(0,2).∴可设所求抛物线的关系式为y=a(x+1)(x-4).························3分将点C(0,2)代入,得2=a(0+1)(0-4),∴a=-21.∴经过点A、B、C的抛物线的关系式为y=-21(x+1)(x-4).····4分即y=-21x2+23x+2.(2)①E1(3,21),E2(54,58),E3(5544,552).························7分关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):设直线BC的解析式为