相似图片搜索原理一则记得百度去年上线了shitu.baidu.com,当你上传一张照片时,百度可以自动帮你适配到相似的图片。加上有众所周知的搜索引擎读不懂图片这一大前提,那么百度是如何实现这一功能的呢?一、一个十分简单的实现方法计算机怎么知道两张图片相似呢?根据NealKrawetz博士的解释,原理非常简单易懂。我们可以用一个快速算法,就达到基本的效果。这里的关键技术叫做”感知哈希算法”(Perceptualhashalgorithm),它的作用是对每张图片生成一个”指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。来个简单的小示例:第一步,缩小尺寸。将图片缩小到8×8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。第二步,简化色彩。将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。第三步,计算平均值。计算所有64个像素的灰度平均值。第四步,比较像素的灰度。将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。第五步,计算哈希值。将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。==8f373714acfcf4d0得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算“汉明距离”(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。怎么样,是不是很简单?其实跟搜索引擎在处理文字时的道理一样,他并没有读懂任何的字或者图片,只是简单的通过特征判定,即可计算出图片的相似度,从而匹配出合适的图片了。