等比数列的通项公式(教案)一、教学目标1、掌握等比数列的通项公式,并能够用公式解决一些相关问题。2、掌握由等比数列的通项公式推导出的相关结论。二、教学重点、难点各种结论的推导、理解、应用。三、教学过程1、导入复习等比数列的定义:1nnaqa*nN通项公式:11nnaaq*nN用归纳猜测的方法得到,用累积法证明2、新知探索例1在等比数列na中,(1)已知163,2,aqa求;(2)已知3620,160,naaa求.,分析(1)根据等比数列的通项公式,得56196aaq(2)可以根据等比数列的通项公式列出一个二元一次方程组23156120160aaqaaq解得152aq所以11152nnnaaq问:上面的第(2)题中,可以不求1a而只需求得q就得到na吗?分析在归纳猜测等比数列的通项公式时,有这样一系列式子:212321234321,,,aaqaaqaqaaqaqaq232112321...nnnnnnaaqaqaqaqaq注意观察等式右边各项的下标与q的次方的和,可以发现,na的表达式中,始终满足nmnmaaq*,nmN结论1数列na是等比数列,则有nmnmaaq*,nmN。再来看一下例1中(2)的另一种解法:363aaq,所以q=2,所以11152nnnaaq习题2.3(1)49P2、在等比数列na中,(1)已知494,972,naaa求;(2)已知26326,,27naaa求.分析(1)可以根据定义和结论1给出两种解法。方法一3418914972aaqaaq方法二594aaq,所以q=3,所以44443nnnaaq。(2)462aaq,所以23q22222222,6()3322,6()33nnnnnnqaaqqaaq当时当时例2在243和3中间插入3个数,使这5个数成等比数列。分析设此三个数为234aaa,,,公比为q,则由题意得243,234aaa,,,3成等比数列;43243q,所以得13q23423418127931812793qaaaqaaa当时,,,当时,,,故插入的三个数为81,27,9或-81,27,-9.问:观察一下例2中,当13q时,这5个数分别为243,-81,27,-9,3,可以发现什么规律?答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。习题2.3(1)49P6、在等比数列na中,10a,243546225aaaaaa,求35aa的值。分析3423aaaa得2324aaa,同理得2546aaa135352222435463355353500,0022()255aaaaaaaaaaaaaaaaaaa例3已知等比数列na的通项公式为32nna,求首项和公比q.分析22121326,32122aaaqa在例3中,等比数列的通项公式为32nna,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点(,)nna均在函数32xy的图像上。问:如果一个数列na的通项公式为nnaaq,其中a,q都是不为零的常数,那么这个数列一定是等比数列吗?分析10aaq,11nnnnaaqqaaq,所以是等比数列。一般可以看作是等比数列通项公式的变形,111nnnnaaaqqaqq,其中1aaq结论2等比数列na的通项公式均可写成nnaaq(a,q为不等于零的常数)的形式。反之成立。习题2.3(1)49P5、在等比数列na中,(1)2519aaa是否成立?2537aaa是否成立?(2)222nnnaaa(n2)是否成立?(3)你能得到更一般的结论吗?分析(1)8422191115()aaaaqaqa26422371115()aaaqaqaqa,所以成立。(2)3112222111()nnnnnnaaaqaqaqa,所以成立。(3)从(1)(2)可以看出,等式两边各项的下表和相等,左边是同一项的平方,如果把左边换成两个不同项的乘积呢?同时,类比等差数列中的一个结论:在等差数列na中,当m+n=p+q(m,n,p,q都是正整数)时,有mnpqaaaa,可以猜测:在等比数列na中,当m+n=p+q(m,n,p,q都是正整数)时,有mnpqaaaa.证1122111mnmnmnaaaqaqaq,1122111pqpqpqaaaqaqaq所以mnpqaaaa.结论3在等比数列na中,当m+n=p+q(m,n,p,q都是正整数)时,有mnpqaaaa.习题在等比数列na中,1a,99a是方程210160xx的两个实根,求4060aa.分析可以利用结论3.因为1a,99a是方程210160xx的两个实根,所以可得199aa=16,所以4060aa=199aa=16.在结论3中,当m=n或p=q时,可以发现此项总是处于另两项的中间。结论4若a,G,b成等比数列,则称G为a和b的等比中项,且2Gab。习题2.3(1)49P7、(1)求45和80的等比中项;(2)已知两个数k+9和6-k的等比中项是2k,求k.分析(1)设此等比中项是G,则2G=4580=3600,所以G=60.(2)2(2)(9)(6)kkk,化简,得253540kk,所以1835kk或四、归纳总结本节课的主要内容是由等比数列的通项公式引深而得到的几个结论,要求学生能牢记并灵活运用。五、布置作业做与本节课内容相关的练习册。六、教学反思本节课的内容都是由等比数列的通项公式推导而得到。在上课的时候,我先是把等比数列的通项公式推导一遍,再由相关的例题或习题引出相关的结论,在讲解中引导学生思考,充分发挥学生的主体作用,使学生能够与我产生互动,调节课堂气氛,使学生积极思考。在上课的过程中,有些地方因缺乏经验不能很好地连贯在一起,这在以后的讲课中要注意。