1《机械振动基础》考试试卷2009-20010学年上学期时间110分钟课程32学时2.0学分考试形式:闭卷专业年级:机械07级总分100分,占总评成绩70%一、填空题(本题15分,每空1分)1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动。2、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或(余弦)函数。3、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。4、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。5、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。6、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。二、简答题(本题40分)1、什么是机械振动?振动发生的内在原因是什么?外在原因是什么?(7分)答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。(3分)振动发生的内在原因是机械或结构具有在振动时储存动能和势能,而且释放动能和势能并能使动能和势能相互转换的能力。(2分)外在原因是由于外界对系统的激励或者作用。(2分)2、从能量、运动、共振等角度简述阻尼对单自由度系统振动的影响。(12分)答:从能量角度看,阻尼消耗系统的能力,使得单自由度系统的总机械能越来越小;(2分)从运动角度看,当阻尼比大于等于1时,系统不会产生振动,其中阻尼比为1的时候振幅衰减最快(4分);当阻尼比小于1时,阻尼使得单自由度系统的振幅越来越小,固有频率降低,阻尼固有频率2d1n;(2分)共振的角度看,随着系统能力的增加、增幅和速度增加,阻尼消耗的能量也增加,当阻尼消耗能力与系统输入能量平衡时,系统的振幅不会再增加,因此在有阻尼系统的振幅并不会无限增加。(4分)3、简述无阻尼多自由度系统振型的正交性。(7分)答:属于不同固有频率的振型彼此以系统的质量和刚度矩阵为权正交。其数学表达为:如果当sr时,sr,则必然有0}]{[}{0}]{[}{rTsrTsuKuuMu。4、用数学变换方法求解振动问题的方法包括哪几种?有什么区别?(7分)答:有傅里叶变换方法和拉普拉斯变换方法两种。(3分)前者要求系统初始时刻是静止的,即初始条件为零;后者则可以计入初始条件。(4分)5、简述刚度矩阵[K]中元素kij的意义。(7分)答:如果系统的第j个自由度沿其坐标正方向有一个单位位移,其余各个自由度的位移保持为零,为保持系统这种变形状态需要在各个自由度施加外力,其中在第i个自由度上施加的外力就是kij。三、计算题(45分)3.1、(12分)如图1所示的扭转系统。系统由转动惯量I、扭转刚度由K1、K2、K3组成。1)求串联刚度K1与K2的总刚度(3分)2)求扭转系统的总刚度(3分)3)求扭转系统的固有频率(6分)。23.2、(14分)如图所示,轮子可绕水平轴转动,对转轴的转动惯量为I,轮缘绕有软绳,下端挂有重量为P的物体,绳与轮缘之间无滑动。在图示位置,由水平弹簧维持平衡。半径R与a均已知。1)写出系统的动能函数和势能函数;(5分)2)求系统的运动方程;(4分)2)求出系统的固有频率。(5分)3.3、(19分)图2所示为3自由度无阻尼振动系统,1234ttttkkkkk,123/5IIII。1)求系统的质量矩阵和刚度矩阵和频率方程;(6分)2)求出固有频率;(7分)3)求系统的振型,并做图。(6分)3.1解:1)串联刚度K1与K2的总刚度:212112KKKKK2)系统总刚度:12312KKKKKK3)系统固有频率:12312KKKKKKII(也可用能量法,求得系统运动方程,即可得其固有频率)3.2解:取轮的转角为坐标,顺时针为正,系统平衡时0,则当轮子有转角时,系统有:2222111()()222TPPEIRIRgg21()2Uka3由()0TdEU可知:222()0PIRkag即:22nkaPIRg(rad/s),故2222nPIRgTka(s)3.3解:1)以静平衡位置为原点,设123,,III的位移123,,为广义坐标,画出123,,III隔离体,根据牛顿第二定律得到运动微分方程:1111212222213233333243()0()()0()0ttttttIkkIkkIkk所以:12312222333340010000040;0000102101210012ttttttttttIMIIIkkkKkkkkkkkk系统运动微分方程可写为:1122330MK…………(a)或者采用能量法:系统的动能和势能分别为222112233111222TEIII222211212323431111()()2222ttttUkkkk222121232343212323111()()()222ttttttttkkkkkkkk求偏导也可以得到,MK。2)设系统固有振动的解为:112233cosuutu,代入(a)可得:1223()0uKMuu…………(b)得到频率方程:222220()24002kIkkkIkkkI即:222422()(2)(4102)0kIIkIk4解得:2517()4kI和22kI所以:123517517()2()44kkkImI…………(c)将(c)代入(b)可得:1235172()045172()40451702()4kkIkIukkkIkuIukkkII和1232202240022kkIkIukkkIkuIukkkII解得:112131::1:1.78:1uuu;(或112131317::1::14uuu)122232::1:0:1uuu;132333::1:0.28:1uuu;(或or112131317::1::14uuu)系统的三阶振型如图: