几种化学物质对压力容器的应力腐蚀[2006-10-171:38:05|By:rsjang]在较高温度和一定浓度的氢氧化钠溶液的特定环境下,热碱溶液会对碳钢或合金钢产生应力腐蚀,这种现象俗称碱脆或苛性碱脆化。钢碱脆的机理目前还没有统一的认识。一般主伙是碳钢在高温下与水蒸气产生如下的化学反应:在这个反应中,氢氧化钠起着催化作用,其过程是反应生成的Fe3O4覆盖在钢的表面,形成一层保护膜。但可能由于过高的局部拉伸应力会使局部区域的保护膜遭到破坏;也可能由于氢氧化钠在表面富集使Fe3O4被溶解;或由于这两种情况的联合作用,在金属表面形成最初的腐蚀裂纹,氢氧化钠富集在裂纹中,形成电化学腐蚀。裂纹的尖端区域成为阳极,而裂纹周围的保护层成为阴极,再加上拉伸应力的作用,使裂纹迅速扩展,最终导致断裂。钢的碱脆一般要同时具备3个条件,即高温、高浓度碱和拉伸应力。有人通过试验指出,浓度为10%的氢氧化钠溶液可以引起碱脆,而5%的浓度则不能。但在压力容器和锅炉中,局部地方常发生氢氧化钠的富集现象,如盐的沉积物或高温下水分的蒸发,都会使局部的碱浓度增大。碱脆常常发生在锅炉的承压部件中,锅炉用水经过处理后有可能含有过剩的碱,在局部地方如沉积物或多孔的氧化皮下面,铆接或焊缝处,法兰连接处等,容易使碱浓度增大,加上不均匀的拉伸应力,使锅炉发生碱脆破裂。近年来,国内外发生过多起一氧化碳和二氧化碳混合气的容器(气瓶)爆炸事故,这也是由应力腐蚀而引起的腐蚀。一氧化碳在通常情况下,被铁吸收后,会在金属表面形成一层保护膜,但在工业应用的一氧化碳中会含有二氧化碳和水分。由于容器或气瓶反复多次充气,器壁上的交变应力,使这层保护层局部遭到破坏,从而会加速湿性二氧化碳对容器的腐蚀。在以原油、天然气或煤为原料的炼油、石油化工及煤气工业设备中,硫化氢的腐蚀是比较普遍的问题,其中尤以湿硫化氢对碳钢及低合金钢的应力腐蚀最值的注意。关于硫化氯应力腐蚀的机理还不十分清楚,有文献认为,湿的硫化氢与铁元素产生如下反应:产生的氢原子向金属内部扩散、聚集、使金属变脆,在氢的作用下形成鼓泡和裂纹。在应力因素方面,主要是焊接的残余应力。在石油化工生产中,有一些容器的工作介质是高温高压下的氢气,如合成氨、热裂化、酒精、加氢等生产装置中的反应器,这些设备如果设计、制造或使用不当就有可能因氢腐蚀而导致破坏。这种氢腐蚀属于化学腐蚀,因为在发生氢脆破坏的氨合成塔的破裂处,取样分析证实,钢的金相组织为脱碳的铁素体。1.钢的氢脆是否发生,主要决定于氢的压力、温度、作用时间和钢的化学成分。氢气压力越高、温度越高、温度越高、碳钢的脱碳层就越深,发生氢脆断裂的时间也越快,其中温度影响最大。在较高温度下(例如700℃),即使氢的压力只有0.1MPa,碳钢也会发生氢脆;如果温度较低(例如200℃),氢的压力为100MPa,也难以产生氢脆。2.钢中碳与合金的含量对氢脆的影响也很大。碳含量越高,在相同的条件下,就越容易发生氢脆。如果在钢中添加有铬、钛、钒等元素,则因这些元素能形成稳定的碳化物,使氢不能与钢中的碳相互作用生成甲烷,因而可能阻止钢的氢脆。3.氢不仅可以在高压的作用条件下进入钢内,在炼钢、焊接等加工过程中,如果有水蒸气存在,氢也可能进入钢内。因为在高温下,水按下列反应被还原为氢:这些氢随即溶解在液态金属中,它同样可以使钢发生氢脆。在用奥氏体不锈钢制造的压力容器中,如果有氯化物溶液存在,也会产生应力腐蚀。这是由于溶液中的氯离子使不锈钢表面的钝化膜受到破坏,在拉伸应力的作用下,钝化膜被破坏的区域就会产生裂纹,成为腐蚀电池的阳极区,连续不断的电化学腐蚀最终可能导致金属的断裂。这种腐蚀与氯离子的浓度关系不大,即使是微量的氯离子,也可能产生应力腐蚀。在实际生产中,有些设备并不是在正常操作条件下被腐蚀破坏的,而是在停车期间由于残留在容器中低浓度(5%)的氯化物冷凝液,产生了应力腐蚀裂纹。也有因用含氯离子浓度较高的水进行耐压试验,结果残留在容器中的水被浓缩而生产应力腐蚀。氯离子对奥氏体不锈钢的应力腐蚀,其裂纹通常是穿晶型的,并且多数是分枝状裂纹。多数腐蚀裂纹都产生在焊缝附近,这就充分说明焊接残余应力是一个重要的因素。