十字相乘法分解因式1.二次三项式(1)多项式cbxax2,称为字母的二次三项式,其中称为二次项,为一次项,为常数项.例如:322xx和652xx都是关于x的二次三项式.(2)在多项式2286yxyx中,如果把看作常数,就是关于的二次三项式;如果把看作常数,就是关于的二次三项式.(3)在多项式37222abba中,把看作一个整体,即,就是关于的二次三项式.同样,多项式12)(7)(2yxyx,把看作一个整体,就是关于的二次三项式.2.十字相乘法的依据和具体内容(1)对于二次项系数为1的二次三项式))(()(2bxaxabxbax方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式cbxax2))(()(2211211221221cxacxaccxcacaxaa它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.二、典型例题例1把下列各式分解因式:(1)1522xx;(2)2265yxyx.例2把下列各式分解因式:(1)3522xx;(2)3832xx.(3)91024xx;(4))(2)(5)(723yxyxyx;(5)120)8(22)8(222aaaa.(6)90)242)(32(22xxxx.(7)653856234xxxx.(8)655222yxyxyx.(9)ca(c-a)+bc(b-c)+ab(a-b).例8、已知12624xxx有一个因式是42axx,求a值和这个多项式的其他因式.因式分解(1)22157xx(2)2384aa(3)2576xx(4)261110yy(5)2252310abab(6)222231710ababxyxy(7)22712xxyy(8)42718xx(9)22483mmnn(10)53251520xxyxy一、选择题1.如果))((2bxaxqpxx,那么p等于()A.abB.a+bC.-abD.-(a+b)2.如果305)(22xxbxbax,则b为()A.5B.-6C.-5D.63.多项式axx32可分解为(x-5)(x-b),则a,b的值分别为()A.10和-2B.-10和2C.10和2D.-10和-24.不能用十字相乘法分解的是()A.22xxB.xxx310322C.242xxD.22865yxyx5.分解结果等于(x+y-4)(2x+2y-5)的多项式是()A.20)(13)(22yxyxB.20)(13)22(2yxyxC.20)(13)(22yxyxD.20)(9)(22yxyx6.将下述多项式分解后,有相同因式x-1的多项式有()①672xx;②1232xx;③652xx;④9542xx;⑤823152xx;⑥121124xxA.2个B.3个C.4个D.5个二、填空题7.1032xx__________.8.652mm(m+a)(m+b).a=__________,b=__________.9.3522xx(x-3)(__________).10.2x____22y(x-y)(__________).11.22____)(____(_____)amna.12.当k=______时,多项式kxx732有一个因式为(__________).13.若x-y=6,3617xy,则代数式32232xyyxyx的值为__________.三、解答题14.把下列各式分解因式:(1)6724xx;(2)36524xx;(3)422416654yyxx;(4)633687bbaa;(5)234456aaa;(6)422469374babaa.15.把下列各式分解因式:(1)2224)3(xx;(2)9)2(22xx;(3)2222)332()123(xxxx;(4)60)(17)(222xxxx;(5)8)2(7)2(222xxxx;(6)48)2(14)2(2baba.16.已知x+y=2,xy=a+4,2633yx,求a的值.