2014-2015学年四川省成都市高二(上)期末数学试卷(理科)一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1)B.(﹣2,1,﹣1)C.(2,﹣1,1)D.(﹣2,﹣1,﹣1)2.如图是某样本数据的茎叶图,则该样本数据的众数为()A.10B.21C.35D.463.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为()A.﹣2B.2C.﹣D.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A.4B.6C.8D.105.经过点(2,1),且倾斜角为135°的直线方程为()A.x+y﹣3=0B.x﹣y﹣1=0C.2x﹣y﹣3=0D.x﹣2y=06.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是()A.相交B.相离C.外切D.内含7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++B.++C.++D.﹣﹣8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC.l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A.1B.2C.3D.410.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为.13.执行如图所示的程序框图,则输出的结果为.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有条.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有(写出所有正确结论的序号).三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•成都期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.17.(12分)(2014秋•成都期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)人数281520251810218.(12分)(2014秋•成都期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.19.(12分)(2014秋•成都期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.20.(13分)(2014秋•成都期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.21.(14分)(2014秋•成都期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.2014-2015学年四川省成都市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1)B.(﹣2,1,﹣1)C.(2,﹣1,1)D.(﹣2,﹣1,﹣1)考点:空间中的点的坐标.专题:空间位置关系与距离.分析:利用关于原点对称的点的特点即可得出.解答:解:与点A关于原点对称的点A1的坐标为(﹣2,﹣1,1),故选:A.点评:本题考查了关于原点对称的点的特点,属于基础题.2.如图是某样本数据的茎叶图,则该样本数据的众数为()A.10B.21C.35D.46考点:众数、中位数、平均数.专题:概率与统计.分析:通过样本数据的茎叶图直接读出即可.解答:解:通过样本数据的茎叶图发现,有3个数据是35,最多,故选:C.点评:本题考查了样本数据的众数,考查了茎叶图,是一道基础题.3.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为()A.﹣2B.2C.﹣D.考点:直线的斜率.专题:直线与圆.分析:直接由两点坐标求得直线AB的斜率,再由两直线平行斜率相等得答案.解答:解:∵A(﹣1,2),B(1,3),∴,又直线l与直线AB平行,则直线l的斜率为.故选:D.点评:本题考查了由直线上的两点的坐标求直线的斜率公式,是基础的计算题.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A.4B.6C.8D.10考点:选择结构.专题:算法和程序框图.分析:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,将x=2代入即可求值.解答:解:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,故当x=2时,y=2×(2+1)=6.故选:B.点评:本题主要考查了程序与算法,正确理解程序的功能是解题的关键,属于基础题.5.经过点(2,1),且倾斜角为135°的直线方程为()A.x+y﹣3=0B.x﹣y﹣1=0C.2x﹣y﹣3=0D.x﹣2y=0考点:直线的点斜式方程.专题:直线与圆.分析:由直线的倾斜角求出直线的斜率,代入直线的点斜式方程得答案.解答:解:∵直线的倾斜角为135°,∴直线的斜率k=tan135°=﹣1.又直线过点(2,1),由直线的点斜式可得直线方程为y﹣1=﹣1×(x﹣2),即x+y﹣3=0.故选:A.点评:本题考查了直线的倾斜角与斜率的关系,考查了直线的点斜式方程,是基础题.6.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是()A.相交B.相离C.外切D.内含考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:把圆的方程化为标准方程,分别找出两圆的圆心坐标和半径R与r,利用两点间的距离公式求出两圆心的距离d,由d>R+r得到两圆的位置关系为相离.解答:解:由圆C1:x2+y2+2x﹣4y+1=0,化为(x+1)2+(y﹣2)2=4,圆心C1(﹣1,2),R=2圆C2:(x﹣3)2+(y+1)2=1,圆心C2(3,﹣1),r=1,∴两圆心间的距离d==5>2+1,∴圆C1和圆C2的位置关系是相离.故选:B.点评:此题考查了圆与圆的位置关系及其判定,以及两点间的距离公式.圆与圆位置关系的判定方法为:0≤d<R﹣r,两圆内含;d=R﹣r,两圆内切;R﹣r<d<R+r时,两圆相交;d=R+r时,两圆外切;d>R+r时,两圆相离(d为两圆心间的距离,R和r分别为两圆的半径).7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++B.++C.++D.﹣﹣考点:空间向量的加减法.专题:空间向量及应用.分析:利用向量三角形法则、平行四边形法则即可得出.解答:解:,,,∴=+=.故选:C.点评:本题考查了向量三角形法则、平行四边形法则,属于基础题.8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC.l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用面面垂直和面面平行的性质定理对选项分别分析选择.解答:解:对于A,α∩β=l,m与α,β所成角相等,当m∥α,β时,m∥l,得不到l⊥m;对于B,α⊥β,l⊥α,得到l∥β或者l⊂β,又m∥β,所以l与m不一定垂直;对于C,l,m与平面α所成角之和为90°,当l,m与平面α都成45°时,可能平行,故C错误;对于D,α∥β,l⊥α,得到l⊥β,又m∥β,所以l⊥m;故选D.点评:本题考查了直线垂直的判断,用到了线面垂直、线面平行的性质定理和判定定理,熟练运用相关的定理是关键,属于中档题目.9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A.1B.2C.3D.4考点:命题的真假判断与应用.专题:简易逻辑.分析:举例说明①错误;由点到直线的距离公式求得(0,0)到直线的距离判断②;求出三角形面积公式,结合三角函数的有界性判断③;由②说明④正确.解答:解:直线l:xsinα﹣ycosα=1,当α=时,直线方程为:x=﹣1,直线的倾斜角为,命题①错误;∵坐标原点O(0,0)到直线xsinα﹣ycosα=1的距离为,∴无论α为何值,直线l总与一定圆x2+y2=1相切,命题②正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积S=≥1,故③正确;∵无论α为何值,直线l总与一定圆x2+y2=1相切,∴④正确.∴正确的命题是3个.故选:C.点评:本题考查了命题的真假判断与应用,考查了直线的倾斜角,点与直线的关系,直线与圆的位置关系,三角函数的值域等,是中档题.10.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列