第1页共10页第三章植物生理一、考点(一)水分的吸收、运输1.自由能和水势:自由能是在恒温恒压条件下能够用于做功的能量。水势是每偏摩尔体积水的化学势差,就是水的化学势差比水的偏摩尔体积来除所得的商。式中Ψ表示的是水势;μw表示的是系统中水的化学势;μw0表示的是纯水的化学势;Δμ表示的是化学势差;V表示的是系统中水的偏摩尔体积。水势的大小决定于化学势差的大小,纯水的化学势最大,并规定在0℃、1.013×105Pa下为0,所以纯水的水势也最大,在0℃、1.013×105Pa下也为0。其他的任何溶液(在开放系统中)都由于溶质的存在,降低了水的自由能而使水的化学势都小于纯水,全为负值。水势当然也比纯水小,也全为负值。水势的大小能够指示水分发生反应或产生运动的方向和限度,并且与化学势所指示的完全相同,无论在植物体外还是在植物体内,水分总是顺着水势梯度由高水势流向低水势区。水势的单位是压力单位,通常以帕斯卡(pa)来表示。2.植物细胞的水势与渗透吸水:液泡中是具有一定渗透势的溶液,植物细胞所处的环境溶液的情况有三种。即环境溶液的水势高于细胞的水势(高水势液),环境溶液的水势低于细胞的水势【低水势液】,环境溶液的水势与细胞的水势相等【等水势液】。但不论处在何种情况下,植物细胞与外界溶液之间都能够发生渗透作用,所以一个成熟的植物细胞与外界环境溶液共同构成了一个渗透系统,能够发生渗透作用。植物细胞以渗透吸水为主,吸水的动力来自细胞内外的水势之差。成熟的植物细胞的液泡内充满着具有一定渗透势【又称为溶质势,用ψs表示;压力势,用ψp表示;衬质势,以ψm表示】。一个典型的植物细胞的水势即:ψw=ψs+ψp+ψm。3.根系吸水及水分沿导管或管胞上升的动力:植物吸水主要借助于根系从土壤中吸收。有两种方式:即主动吸水(根压)和被动吸水(蒸腾拉力)。植物体从空间上可分为共质体【整个植物体的原生质总体】、质外体【细胞壁、细胞间隙和木质部导管等原生质体以外】和液泡。(二)矿质元素的吸收和运输1.植物细胞对矿质元素的吸收:被动吸收和主动吸收【主要方式】和胞饮作用。(1)被动吸收:①简单扩散;②杜南平衡【一种特殊的积累离子的现象】(2)主动吸收:①需要消耗呼吸作用所提供的能量,且被转运的离子或分子数量与所消耗的能之间有一定的量的关系;②转运的速度超过扩散的速度;当转运达到最终的稳衡状态时,膜两侧物质的浓度不相等。这种利用呼吸释放的能量做功而逆着浓度梯度快速吸收离子的过程称为细胞的主动吸收。凡是影响呼吸作用的因素,都会影响细胞的主动吸收。2.植物吸收矿质元素的特点:(1)离子的选择吸收;(2)单盐毒害和离子对抗;3.矿质元素在植物体内的运输(三)光合作用:光合作用大致可分为:第一步,光能的吸收、传递和转换成电能的过程(通过原初反应完成);第二步电能转变为活跃的化学能过程(通过电子传递和光合磷酸化完成);第三步,活跃的化学能转变为稳定的化学能过程(通过碳同化完成)。1.原初反应:原初反应包括光能的吸收、传递与转换过程。叶绿体中的色素分为两种:中心色素【少数特殊状态的叶绿素a,具有光化学活性,既是光能的“捕捉器”,又是光能的“转换器”】和聚光色素【无光化学活性,只有收集和传递光能的作用,能把光能聚集起来,传到作用中心色素,绝大多数色素(包括大部分叶绿素a和全部叶绿素b、β-胡萝卜素、叶黄素、藻红蛋白和藻蓝蛋白)】。当波长范围为400~700nm的可见光照到绿色植物上时,聚光系统的色素分子吸收光量子被激发起来。最终的电子供体是水,最终的电子受体是NADP+。2.电子传递和光合磷酸化:作用中心色素分子被激发后,把电子传递给原初电子受体,转为电能,再通过水的光解和光合磷酸化,经过一系列电子传递体的传递,最后形成ATP和NADPH+H+,从而将电能转化为活跃的化学能,并把化学能贮藏于这两种物质之中。光合作用的光化学反应是由两个光系统完成的。即光系统Ⅰ(简称PSⅠ)和光系统Ⅱ(称PSⅡ)。每个光系统均具有特殊的色素复合体及一些物质。光系统Ⅰ的颗粒较小,直径为110埃,位于类囊体膜的外侧;光系统Ⅱ的颗粒较大,直径为175埃,位于类囊体膜的内侧。PSⅠ的光反应是长波光反应,其主要特征是NADP+的还原,其作用中心是P700。当PSI的作用中心色素分子P700吸收光能而被激发后,把电子供给Fd(铁氧还蛋白),在NADP还原酶的参与下,Fd把NADP+还原成NADPH+H+。PSⅡ的光反应是短波光反应,其主要特征是水的光解和放氧。光系统Ⅱ的作用中心色素分子可能是P680,它吸收光能,把水分解,夺取水中的电子供给光系统Ⅰ。连接着两个光系统的电子传递链,第2页共10页是由一系列互相衔接着的电子传递物质(光合链)组成的。光合链中的电子传递体是质体醌(PQ)、细胞色素b559、Cytf和质体蓝素(PC)等。光合作用中,磷酸化和电子传递是偶联的,在光反应的电子传递过程中能产生ATP,即叶绿体在光作用下把无机磷和ADP转化成ATP,形成高能磷酸键,此称为光合磷酸化。光合磷酸化又分为非循环式光合磷酸化和循环式光合磷酸化两种类型。光系统Ⅱ水光解释放出的电子,经过一系列的传递,在细胞色素链上引起了ATP的形成。同时把电子传递到PSⅠ上去,进一步提高能位,使H+还原NADP+成为NADPH+H+。在这个过程中,电子传递不回到原来的起点,是一个开放的通路,故称非循环式光合磷酸化。其反应式为:2ADP+2Pi+2NADP++2H2O叶绿体光/2ATP+2NADPH+2H++O2光系统Ⅰ产生的电子经过铁氧还蛋白和细胞色素b563等后,只引起ATP的形成,而不放氧,不伴随其他反应。在这个过程中,电子经过一系列传递后降低了位能,最后经过质体蓝素重新回到原来的起点,也就是电子的传递是一个闭合的回路,故称为循环式光合磷酸化。其反应式为:ADP+Pi叶绿体光/ATP经过光反应后,由光能转变来的电能暂时贮存在ATP和NADPH中。叶绿体用ATP和NADPH+H+,便可在暗反应中同化二氧化碳,形成碳水化合物。因此有人把ATP和NADPH+H+称为还原力或同化力。还原1分子CO2,需要2个NADPH+H+和3个ATP,这3个ATP中有2个产生于非循环式光合磷酸化,还有1个产生于环式光合磷酸化。3.碳的同化:从能量转换角度来看,碳同化是将ATP和NADPH+H+中的活跃的化学能,转换为贮存在碳水化合物中的稳定化学能。光合作用中,由CO2到己糖的总反应式可表示如下:6CO2+18ATP+12NADPH+12H++12H2O→6–磷酸果糖(已糖)+18ADP+12NADP++17H3PO4高等植物光合同化CO2的生化途径有卡尔文循环、C4途径和景天科酸代谢三种。其中以卡尔文循环最基本、最普遍,同时也只有这种途径具备合成淀粉等产物的能力。其他两种不够普遍,而且只能起固定、转运CO2的作用,单独不能形成淀粉等产物,所固定的CO2在植物体内再次释放出来,参与卡尔文循环。(1)卡尔文循环:是所有植物光合作用碳同化的基本途径,它能形成碳水化合物并输送到细胞质中。在这个循环中,由于大多数植物还原CO2的第一个产物是三碳化合物(如磷酸甘油酸),故又称为C3途径。卡尔文循环大致可分为羧化【1,5–二磷酸核酮糖十CO2→3–磷酸甘油酸】、还原【3–磷酸甘油酸→3–磷酸甘油醛】和再生【3–磷酸甘油醛→6–磷酸果糖→5–磷酸核酮糖→1,5–二磷酸核酮糖(简称RuBP)】三个阶段。在此循环途径中,首先是RuBP在核酮糖二磷酸羧化酶催化下与CO2结合,生成3–磷酸甘油酸;3–磷酸甘油酸经磷酸化和脱氢两步反应,生成3–磷酸甘油醛;3–磷酸甘油醛分别经两条途径又重新回到RuBP,继续进行CO2的固定、还原等一系列反应,使循环反复进行。卡尔文循环的产物不是葡萄糖,而是三碳的丙糖,即3–磷酸甘油醛(简写为PGALd),再由2个PGALd化合而成葡萄糖。这一循环的总账是:循环3次,固定3个CO2分子,生成6个PGALd,其中1个PGALd用来合成葡萄糖或其他糖类,这1个PGALd才是本循环的净收入,其余5个PGALd则用来产生3个分子的RuBP以保证再循环。所以每产生1分子葡萄糖需要2个分子的PGALd,即需要完成6次循环。从能量的变化来计算:生产一个可用于细胞代谢和合成的PGALd,需要9个ATP分子和6个NADPH分子参与。即:3RuBP+3CO2ATPNADPH9/6PGALd+3RuBPPGALd在叶绿体中不能积累,需通过一系列转化形成淀粉,作为光合作用的产物,暂时贮存于叶绿体中,或输出叶绿体,在细胞质中转变为蔗糖。一般以淀粉和蔗糖作为光合作用的产物。(2)C4途径:有些起源于热带的植物,如甘蔗、玉米、高梁等,除了和其他植物一样具有C3途径外,还有一条固定CO2的途径和C3途径联系在一起。这个途径的CO2受体是磷酸烯酸式丙酮酸,在叶肉细胞质中,在磷酸烯酸式丙酮酸(简写为PEP)羧化酶的催化下,固定CO2而生成草酰乙酸。由于还原CO2的第一个产物草酰乙酸是四碳化合物,所以这个途径叫C4途径。具有C4途径的这类植物叫C4植物。C4植物叶片的结构很独特,含有2种不同类型的光合细胞,各具不同的叶绿体。围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体,具有发达的基粒构造,而维管束鞘细胞的叶绿体中却只有很少的基粒,而有很多大的卵形淀粉粒。在C4植物的叶肉细胞中,CO2的接受体不是C3途径的RuBP,而是PEP。催化这一反应的酶是PEP羧化酶。CO2被固定后,不是生成三碳的磷酸甘油酸(简写成PGA),而是生成四碳的双羧酸,即草酸乙酸,草酸乙酸再被NADPH还原而成苹果酸。苹果酸离开叶肉细胞,进入维管束鞘第3页共10页细胞中,脱羧放出CO2,而成为丙酮酸。丙酮酸再回到叶肉细胞中,被转变为PEP,继续固定CO2。而苹果酸脱羧产生的CO2,在维管束鞘细胞中仍为RuBP所固定,而进入卡尔文循环。C4植物既有C4途径又有C3途径,这2个途径的关系如下图所示。在C4植物中,CO2在叶肉细胞中先按照C4途径被固定,然后在维管束鞘细胞中仍旧是通过卡尔文循环而被还原。由于在C4植物的C4途径中,PEP羧化酶对CO2的亲和力极强,甚至当CO2浓度降低时,也能固定CO2。所以C4途径是在CO2浓度低时获取CO2的一种途径。生活在高强光和热带地区的多种植物,气孔经常是关闭的,这样可防止水分的过度散失,但同时也导致体内CO2浓度的降低。C4途径的存在,使CO2不致成为光合作用的限制因子,从而提高了光合效率。这通常是C4植物的生产效率明显高于C3植物的重要原因之一。C3植物生产效率较低的另一个原因是它们具有较强过程的光呼吸。4.光呼吸:光呼吸是指绿色植物只在光照条件下才能吸收氧气,放出CO2的过程。光呼吸和一般生活细胞的呼吸作用(通过线粒体释放CO2的呼吸作用)显著不同,它是在光刺激下绿色细胞释放CO2的现象。光呼吸的高低。是指植物在光合作用下释放CO2的多少,这样释放的CO2,实际上是植物在光合作用过程中同化的CO2,它往往将光合作用已固定的20%~40%的碳变成CO2再释放出来。显然这是一个消耗过程,对积累光合产物很不利。光呼吸的底物是乙醇酸。乙醇酸来自叶绿体,叶绿体中的RuBP羧化酶既是羧化酶,催化CO2与RuBP结合,又是加氧酶,催化O2与RuBP结合。在CO2分压低、氧分压高时,这个酶催化O2与RuBP结合而生成三碳的3–PGA和二碳的2–磷酸乙醇酸。2–磷酸乙醇酸水解而成乙醇酸和无机磷酸。乙醇酸进入过氧化物体,在这里被氧化,其产物进入线粒体,在这里释放出CO2,这就是光呼吸的全过程。(四)呼吸作用:呼吸作用为生物体进行生命活动提供能量,呼吸作用分为有氧呼吸和无氧呼吸两种类型。1.有氧呼吸的全过程:细胞有氧呼吸的全过程可分为以下三个步骤:糖酵解:将一分子葡萄糖分解为两分子丙酮酸,并且发生氧化(脱氢)和生成少量ATP。三羧酸循环:丙酮酸彻底分解为CO2和氢(这个氢被传递氢的辅酶携带着),同时生成少量的ATP。氧化磷酸化:氢(氢离子和电子