第九章梁的平面弯曲

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第九章梁的平面弯曲9-1试画出图中各梁的剪力图与弯矩图,并确定梁中的maxQF和maxM。(a)解:(1)求支座反力,根据平衡方程得,ABABBA002(2)025144yFFFqaaMFaqaaFqaFqa求得:,(2)截面法求内力,0x2a:FN=0,SA14FFqaA14MFxqax2ax3a:FN=0,SAB(2)15(2)344FFFqxaqaqaqxaqxqa2AB2221(2)(2)2151(2)(2)44219322MFxFxaqxaqaxqaxaqxaqxqaxqa(3)画梁的剪力图与弯矩图,根据剪力方程和弯矩方程画梁的剪力图与弯矩图如图所示。qB(a)ACa2aFAFBFFSS//kkNNx+14qaqaM/kNmBACx212qa--FSxFAFNA2ABCSASBSCSBABC100211044MMqaMFqaFqaFFqa左右根据剪力方程和弯矩方程计算、、各点的剪力和弯矩,qBAxFAFBFNFS2Smaxmax12,2xaFqaMqa显然,在处有,(b)解:(1)求支座反力,根据平衡方程得,ABB0A0B020()/2()/2FFFFaFaMFFaMaFFaMa求得:(2)截面法求内力,0xa:FN=0,SA0/2FFFaMaA0/2MFxFaMxaax2a:FN=0,SA00/2/2FFFFaMaFMFaaA00()/2()/2MFxFxaFaMxaFxaFMaxFa2ax3a:FN=0,SAB00/2/20FFFFFaMaFFaMaAB000()(2)/2()(2)/2MFxFxaFxaFaMxaFxaFaMxaaM(3)画梁的剪力图与弯矩图,AB0C000SASBSBSC0,,0,022ABCMMMMMFaMFaMFFFFaa左右根据剪力方程和弯矩方程计算、、各点的剪力和弯矩,,根据剪力方程和弯矩方程画梁的剪力图与弯矩图如图所示。00Smaxmax,,22FaMFaMxaFMa显然,在处有M0B(b)AFCaaaFAFBAxFAFFNFSFSxFAFNAFFSS//kkNNx+02FaMaM/kNmBACx0M-02FaMa+02FaMBAxFAFBFNFSF(c)解:(1)根据平衡方程,显然固定端A处没有约束反力。AB段没有内力,BC段只受弯矩的作用,弯矩大小为M0,A、B、C各点的剪力和弯距为,AB0BCSASBSC000000MMMMMFFF左右(2)画剪力图和弯矩图。各截面均无剪力,弯矩图如图所示。显然,S0maxmax0,FMM(i)解:(1)求支座反力,根据整体平衡条件求得:C53,44AFFF(2)截面法求内力,0xa:FN=0,SA54FFFA54MFxFxax2a:FN=0,SA14FFFFA1()4MFxFxaFxFa2ax3a:FN=0,SA14FFFFA1()4MFxFxaFaFx3ax4a:FN=0,SA34FFFFFA3()(3)34MFxFxaFaFxaFxFa(3)画梁的剪力图与弯矩图,先求A、B、C、D、E各点的内力,(c)ACBM0M0aaM/kNmBACx0M+CB(i)AaaFFaFaaDEFAFCAFSxFNFAFSAxFNFAFDFFSAxFNFADBFaFFSAxFNFADBFaFESASDSDSBSESESCADBBEC551444113344445304213024FFFFFFFFFFFFFFMMFaMFaMFaMFaM左右左右右右根据剪力方程和弯矩方程画梁的剪力图与弯矩图如图所示。可见,Smaxmax53,42FFMFa(j)解:求支座反力,根据整体平衡条件求得,AB5544FqaFqa(2)截面法求内力,0xa:FN=0,S0F2Mqaax3a:FN=0,SA9()4FFqxaqxqa2A221()()()21911244MqaFxaqxaxaqxqaxqa(3)画梁的剪力图与弯矩图,先求A、B、C、D各点的内力,SCSASASBSBSD222CABD5004311422102FFFqaFqaFqaFqaMqaMqaMqaM左右左右FFSS//kkNNx+M/kNmBADx32Fa-+C54F14F34FE34Fa54FaCFFSS//kkNNx+M/kNmBAx--212qaD54qa34qa2qa12qa(j)aqa2BAa2aqqa/2FAFBCDCFSxFNqa2ACFSxFNqa2qFAACFSxFNqa2FABqFB求AB段弯矩的极值,由904dMqxqadx得,94xa,94xa时,2732Mqa根据剪力方程和弯矩方程画梁的剪力图与弯矩图如图所示。可见,2Smaxmax5,4FqaMqa9-4T形截面梁如图所示,试确定中性轴的位置yc;计算截面惯性矩Iz。若承受的弯矩M=-M0,求梁中的最大拉应力和最大压应力。解:设中性轴距最下端为yc1122c124020010040200220402002160(mm)AyAyyAA两矩形的形心轴到z轴的距离分别为,12(200160)2060mm16010060mmyy截面惯性矩2211123232741120040602004040200602004012128.5310mmzzzzzIIyAIyA截面弯矩0MM,则梁上面受拉,下面受压,习题9-4图cy20040z40200z2z1y1y2yc00maxmax0600maxmax0(kNm)808.53100.938(MPa)(kNm)101068.531071.876(MPa)zzzMMyIMMMyIM拉压9-7矩形截面木梁如图所示。已知F=10kN,a=1.2m,许用应力[]=10MPa。设截面的高宽比为h/b=2,试设计梁的尺寸。解:(1)作梁的弯矩图如图所示,危险截面A、B截面。(2)强度条件:max212kNm6121.6mm2243.3mmzzMWbhMWbhb代入上式求得:9-8梁AB由固定铰支座A及拉杆CD支承,如图所示。已知圆截面拉杆CD的直径d=10mm,材料许用应力[]CD=100MPa;矩形截面横梁AB的尺寸为h=60mm,b=30mm,许用应力为[]AB=140MPa。试确定可允许使用的最大载荷Fmax。解:求约束反力,梁的受力图如图所示,平衡方程:ACDCD4008000FFFFF求解得:CD2FF作梁的弯矩图如图所示。强度条件:2FB习题9-7图AaaaFFaM/kNmBAx12kNm---12kNm习题9-8图FABCD400mm400mmFCDFAM/kNmBAx--0.4FCDCDCDDAB22CD23maxCD:D78.5mm4118000mm6CD3.925kN6.3kN3.925kNzzFAMWAdWbhFFF杆梁的截面:由杆强度条件求得:由梁的正应力强度条件求得:综上所述,结构允许使用的最大载荷为,9-11矩形截面悬臂梁受力F作用,如图所示。已知截面高为h,宽为b,梁长为L。如果L/h=8,试问梁中的最大正应力max值与最大剪应力max值之比为多少?解:梁中最大应力发生在A截面AAmax216zMFLMFLWbh最大剪应力:maxmaxmax2maxmax3234::1268:32:1FbhFLFLbhhbhLh又ABF习题9-11图

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功