1第二十二章一元二次方程小结与复习一、知识结构一元二次方程解法直接开平方法配方法公式法因式分解法判别式应用列方程或方程组解应用题二、知识点归纳1.方程中只含有_______未知数,并且未知数的最高次数是_______,这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.2.解一元二次方程的一般解法有(1)_________;(2)________;(3)_________;(4)求根公式法,求根公式是3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,它没有实数根.4.一元二次方程的根与系数的关系:(根与系数关系的前提条件是根的判别式必须大于或等于零)结论1.如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么:acxxabxx2121,结论2.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.5.一元二次方程应用题.三、典型习题(一)一元二次方程概念1.在下列方程中,一元二次方程的个数是().①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为().A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,63.方程x(x-1)=2的两根为().A.x1=0,x2=1B.x1=0,x2=-1C.x1=1,x2=2D.x1=-1,x2=24.已知x=-1是方程ax2+bx+c=0的根(b≠0),则acbb=().A.1B.-1C.0D.25.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.6.一元二次方程的一般形式是__________.7.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.8.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.29.a满足什么条件时,关于x的方程a(x2+x)=3x-(x+1)是一元二次方程?10.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么?11.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.(二)解一元二次方程的方法:1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3B.(x-2)2-3C.(x+2)2+3D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31B.x2-8x+(-4)2=1C.x2+8x+42=1D.x2-4x+4=-113.方程x2+4x-5=0的解是________.4.代数式2221xxx的值为0,则x的值为________.5.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.6.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.7.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.8.当x=______时,代数式x2-8x+12的值是-4.9.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.10.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)=0的根的情况是________.11.如果x2-4x+y2+6y+2z+13=0,则(xy)z=12.某数学兴趣小组对关于x的方程(m+1)22mx+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元一次方程m是否存在?若存在,请求出.13.用直接开平方法解下列方程(1)3x2+9=0(2)8x2-16=0(3)(x-13)2=89(4)2(x-3)2=7214.用配方法解下列方程(1)x2-8x+1=0(2)x2-2x-12=0(3)9y2-18y-4=0(4)x2+3=23x315.用公式法解下列方程.(1)2x2-x-1=0(2)x2+1.5=-3x(3)x2-2x+12=0(4)4x2-3x+2=016.用因式分解法解下列方程.(1)3y2-6y=0(2)25y2-16=0(3)x2-12x-28=0(4)x2-12x+35=017.不解方程,判定方程根的情况(1)16x2+8x=-3(2)9x2+6x+1=0(3)2x2-9x+8=0(4)x2-7x-18=018.不解方程,写出下列方程的两根和与两根积:013)1(2xx0532)2(2xx02231)3(xx362)4(2xx01)5(2x012)6(2xx19.已知方程032mxx的一个根是1,求另一根及m的值.20.已知方程042cxx的一个根为32,求另一根及c的值.21.已知xx21,是方程01322xx的两个根,不解方程,求下列代数式的值.xx2122)1(xx2111)2()3)(321)(3(xx4))(4(212xxxxxx212122)5(xxxx2112)6(22.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+30的解集(用含a的式子表示).23.m为何值时,(1)方程01342mxx有两个不相等的正数根?(2)方程01222mxx的两根异号?(三)一元二次方程应用题倍数关系1.要组织一场篮球联赛,每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛?2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解决增长率与降低率问题1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.2.某糖厂2010年食糖产量为a吨,如果在以后两年平均增长的百分率为x,那么预计2012年的产量将是________.3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,2001年降价70%至a元,则这种药品在1999年涨价前价格是__________.4.某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材立方米5.某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为6.公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.5面积与面积之间的关系1.矩形的周长为82,面积为1,则矩形的长和宽分别为________.2.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.4.如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为500m2,道路的宽为多少?5.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?建立数学模型以解决如何全面地比较几个对象的变化状况的问题1.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.2.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.3.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,则列出的方程是________.4.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,那么商场平均每天可多售出34张.如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.5新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?7.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?8.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,如果要使产量增加15.2%,那么应多种多少棵桃树?9.某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a(a0)个成品,且每个车间每天都生产b(b0)个成品,质量科派出若干名检验员周一、周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.(1)这若干名检验员1天共检验多少个成品?(用含a、b的代数式表示)(2)若一名检验员1天能检验45b个成品,则质量科至少要派出多少名检验员?