第二章初等积分法习题2-1判断下列方程是否为恰当方程;并对恰当方程求解。,,,2Q2yP,2.2P0y2()2yx.2,02,2,0P,12,13.0)12()13.(.12222CxyyxxQyPxyxQyxdyxdxxQyxQxPdyxdxx通积分为:故方程为恰当方程。,因解:令)(故不是。因解:令),2),22(,,P,,P).,(,0)().(32222为任意常数(故通积分为故方程为恰当方程。因解:令为常数和KKcybxyaxbxyycxadbxdybydxcydyaxdxxQyPbxQbycybxQbyaxcbadycybxdxbyax故不是。因令解,0,,P,,P;).0(,0)().(4bbxQbycybxQbyaxbdycybxdxbyax.sinsin),sinsin(sin2coscos,.cos2,cos2P.sin2,cos)1(.0sin2cos)1.(522222CuutuutdudttuduudutuQtPutuQuttutQutPudttudut故通积分为故方程为恰当方程。故解:令.2),2(22,.2,2P,2,2.0)2()2.(622222CxyeyexyyeeddxyxydydyedxyedxexQyPyexQyeyxyeQyeyePdyxyedxyeyexxxxxxxxxxxxxxx故通积分为故是恰当方程。因解:令.ln3),ln3(2ln,,1,1P,2ln,P;,0)2(ln).(72323222CxyyxxyyxdydyxdydxxydxxxQyPxxQxyyxQxxydyyxdxxxy故通积分为故是恰当方程。因令:解KxyyxbxyxadbxydydxbydxaxbcbcbccyxQbyycxyQbyaxcbacxydydxbyaxln3),3(2,22:,,2,,2P,,P;,(,0).(82323222222故通积分为当时,不是恰当方程。当是恰当方程当因令:解为常数)和..),(12,,21,12P,,12P;,0)12.(9222222222222CtssCtstststsddttsdstldttsdstssQtPtssQtsttssQtsdttssdsts故通积分为故是恰当方程。因令:解CyxFCKFKfKfKFCdKKfdKKfyxyxdyxfdyyxfdxyxfxQyPxfyxyxfyxQyfxyyxfxyyxyfQyxxffdyyxyfdxyxxf)(,)().((K)F')()(.)(,0)(21,K),()(21)(2121,,2')(,,2')(P,(),P;)(,0)()(.1022222222222222222222222222即故通积分为的一个不定积分,是令令)(故是恰当方程。因)(令:解是连续的可微函数其中习题2-21.求解下列微分方程,并指出这些方程在xOy平面上有意义的区域:.0(,2323,0;).1(322222)其通积分为程它是一个变量分离的方解:yCxyCyxydydxxyxdxdy.1,0(,1ln230)21ln31(021)1(31)01(010)1;1().2(32232333323232)(解:)xyCxyyxddyxxdxydydxxxdyxydxxxyxdxdy0sindx.32xydy)(解:①0)cos(1cos10sin02yxCCxyxdxdydyy时,当②是特解时,当002yy在整个平面上).2tan(2arctan)1(1).1)(1()1()1(;1).4(22222222CxxyCxxydxxyyyxyxydxdyxyyxdxdy解:.2coscos;;)2cos(cos).5(222yxdxdyyxdxdy解①当02cos2y时,.2sin22tan22sin41212tan21)2cos1(2122sec21cos2cos222CxxyCxxydxxyydxdxydy②当02cos2y时,为特解。422.02cosnynyy21)6(ydxdyx;解:①当012yx时,.lnarcsin,12Cxyxdxydy②当012yx时,为特解。或不是解,舍去1)(0yx,.0)(,)(22121)()(;).7(2222yxyxyxyyxeyCeexyCexeydxexdyeyeyexdxdy解:2.求解下列微分方程的初值问题:.212cos213sin3121sin31cos21.3sin312cos21;3)2(,03cos2sin).1(xyCCCyxyydyxdx故解为解:01)1(2212)1(,21211.2;1)0(,0).2(222yexyexCCCyexeydydxxedyyexdxydyyexdxxxxxxxx故解为又解:.2,2.Cln;2)0(,).3(erCCerrdrdryrddr故解为又解:..01ln3,110ln3.ln)1(;0)1(,1ln).4(3322xxxyyCCCxxxyydxxdyyyyxdxdy故解为又解:..312,232111211;1)0(,1).5(22222332xyCCCxyxxdxydyyxydxdyx故解为又解:3.求解下列微分方程。.sincos;;cos).1(Cxyxdxdyxdxdy解通解。特解若解为常数,00,ln)0(;);0(;).2(CCCeyCaxyyadxydyaaydxdyax.1),0(1C11111,1ln211ln21)11211;;1).3(222222yCeCeyCeyyCeyyCxyydxydyydydxydyydxdyxxxx外加特解(解.1.2,312311)0(01;);2,1,31(;).4(1321xnnnCeynnCxynCxyCxynydxydyynnydxdy时,当为特解;时,当解4.跟踪:设某A从xOy平面上的原点出发,沿x轴正方向前进;同时某B从点(0,b)开始跟踪A,即B与A永远保持等距b.试求B的光滑运动轨道。解:设B的运动轨迹)(xyy,则Cxybbybbbybybydxdy22222222ln2,解得.ln21,,)0(222222ybybbybbbxby得又(发散)。当瑕积分的解局部唯一,当且仅上的每一点,微分方程则在直线当且仅当)内连续,而且的某领域(例如,区间在其中设微分方程aayfdyayayyfayayyfxfdxdy)(,,0)()(),(.5解:用反证法“”显然。“”(反证法):若解不唯一,则存在.)(,)()(0axaxxy且)()())(()()(11)()(11aaxfxdyfdyaaaa从而,由方程矛盾。习题2-31.求解微分方程:.)1()1()1()(2,)(:2).1(2222222xxxxxxxxxxdxxCeexyCexyeexdyeddxxeydxedyeeexxeydxdy乘方程两侧,得解:用积分因子..cos2coscoscossin2)cos(coscossin2cossincos1,cos1)(:2sin)2(22)(xxCyCxxyxdxxyddxxxxdxxxydyxxexxytgxdxdydxxtg乘方程两侧,得解:用积分因子.,)(sin2,0:1)(,sin2)3(22乘方程两侧,得用积分因子(一阶线性)。得时,两边除以解:xexxxyxdxdyxxyxydxdyxdxx.sincos0)1(11(sincossin)(2222xxxyxCCyCxxxyxxxdxyxd故)又)21(arcsin1121.2211)0()1(arcsin1121.2arcsin212arcsin211111(C.111)1()('111)(111111)(11)('C,11)(1111ln)1111(21ln111:1)0(,111).4(2212212222222221212221212121222xxxxxyCCyCxxxxxyCxxxCxxxxxCdxxxxxdxxxxxxxxCxxxxCxxxxxCxxxxxxCyxxCyCxxCdxxxyxdxydyyxdxdyyxyxdxdy故,又故,)即有,有令解:2。把系列微分方程化为线性微分方程:故有令解,2,.;;2).1(222ydyduyuyyxdxdy22221xudxduyuxdxdyy原式。.;;)..2(222yyxdxdxyyxdydxyxydxdyyxydxdy解.10313,3,.:;03).3(232223332xuxdxduxudxdyyxydyyduyuxydxdyxy原式故有令解.10313,cos,.sin;;tancos1).4(2322xuxdxduxudxdyyxyydydzyzyxydxdy原式故有令解.)()0()().0()(F0)()(F00)((0)(0)(,)().0(,)0()().0(,0)(')(.3000000000)0(()()()()()()()()(xxxxxxxxxdssadssadssadssadssadssadssadssadssaexxeFxxxexxedyedyxaedxdyexxexxyxayxy)即上为减函数,在由。有侧乘上,证明:在微分不等式两求证:满足微分方程不等式设5.考虑方程);()(xqyxpdxdy试求出此解。周期解,当且仅当则方程有唯一的若的平均值为周期,当且仅当函数则方程的任一非零解以若证为周期的连续函数。求都是以和其中,0,0)()2(0)(1)(,0)()1(:0)()(0pxqdxxppxpxqxqxp).(y(,0)(.0)0()()0()(y0()()()().0()()0()()(0)()(0)(0)(1)(0)(10)(0)(1)()(0,))(1(0000000000000)()()(000000)()()()()()()(xxyxlyylxtyxlxyxyyyCeCeCCedttpdttpdttpdttpdttp