第二章离散傅里叶变换(DFT)1.设x(n)=R3(n)求)(~kX,并作图表示)(~nx,)(~kX。解:102)(~)(~NnknNjenxkX=)7sin()73sin(722072kkeekjnknj)(~nx-712789n|)(~kX|k)7()(~rnxnx2.设求:)(~nx,)(~ny的周期卷积序列)(~nf,以及)(~kF。解:rrnfnf)7()(~)6(3)5(2)4()3(0)2()1(2)(3)(nnnnnnnnf)7sin()73sin()(~)7sin()74sin()(~7106472733072kkeekYkkeekXkjnknjkjnknj)7(sin)73sin()74sin()(~)(~)(~2713kkkekYkXkFkj2.用封闭形式表达以下有限长序列的DFT[x(n)]。解:(1)nnny其他,064,1)(rrnxnx)7()(~rrnyny)7()(~nnnx其它,030,1)()()(0nRenxNnjX(k)=DFT[x(n)])()2sin()2sin()(11)(00)21(100000kRNkNekRWeWekRWeNNkNjNkNjkNNNjNnNknNnj(2))(]11211121[)]([)()]()([21)]([][cos)(cos)(0000000kRWeeWeenxDFTkXkXkXnxReRnnnRnxNkNjNjkNjNjenjeN有:由关系:)(cos21)1cos(coscos120000kRWWNWWNNkNkNkNkN(3))]()([21)](Im[]Im[sin)(sin)(000kXkXjnxennnRnxnjN由关系:有:X(k)=DFT[x(n)])(]11211121[)(0000kRWeejWeejkXNkNjNjkNjNj)(cos21)1sin(sinsin20000kR(4))()sin(2)()1()()()()()2(10kRkNNekRWNkRnWkXnnRnxNkNjNkNNnNknNN4.已知以下X(k),求IDFT[X(k)],其中m为某一正整数,0mN/2.解:(1)10)())(1()]([)(,0,2,2)(NkNknNjjnRWKXNkXIDFTnxkmNkeNmkeNkX其他)()(21)()(2122)(nReeeenRWeWeNNmnjjNmnjjNnmNNjmnNj)()2cos(nRNmnN(2))()sin(2)()1()()()()()2(10kRkNNekRWNkRnWkXnnRnxNkNjNkNNnNknNN其他,0,2,2)(mNkjeNmkjeNkXjjx(n)=IDFT[X(k)]=)())(1nRWkXNNknN()()(2122nReeeejNNmnjjNmnjj)()2sin(nRNmnN5.有限长为N=100的两序列9990,1891,00,1)(,9911,0100,1)(nnnnynnnx作出x(n),y(n)示意图,并求圆周卷积f(n)=x(n)y(n)并作图。解:nnnnnnynxnf其他,09990,89100,11)()()(x(n)y(n)1099n9099ny(n)109099n6.有限长序列N=10的两序列用作图表示x(n),y(n)f(n)=x(n)y(n)。解:x(n)09n95,140,1)(,95,040,1)(nnnynnnxy(n)9nf(n)51-1n-3-57.已知两有限长序列)()2sin()(),()2cos()(nRnNnynRnNnxNN用卷积法和DFT变换两种方法分别求解f(n)。解:(1))(2cos2)2sin2cos2sin2cos2(cos)())(2cos2cos(1010210nnRNNmNmNnNmNnNnRmnNmNNNmNmNmNkNkNnxDFTkX其他,01,1,2/)]([)()()))(()(()(~*)()(10nRmnxmxnxnxnfNNNm)()))(()(()(~*)()(10nRmnxmxnxnxnfNNNm)())(1()(,01,1,4/)(102nRWkFNnfkNkNkFNNkknN其他)(2cos4)()(4)()(4[22)1(nnRNNnReeNnRWWNNNnNjnNjNnNNnN(2))()))(()(()(*)()(10nRmnxmynxnynfNNmN)(2sin2)()2sin2sin2cos2sin2(cos)())(2cos2sin(1021010nnRNNnRmNnNmNmNnNnRmnNmNNNNmNmNNmkNkNjkNjnyDFTkYkNkNnxDFTkX其他其他,01,21,2)]([)(,01,1,2/)]([)(kNkNjkNjkF其他,01,41,4)(22)()44()())(1()()1(10nRWjNWjNnRWkFNnfNnNNnNNNkknN)(2sin2)()2(222nnRNNnRjeeNNNnNjnNj(3))()))(()(()(*)()(10nRmnymynynynfNNmN)(2cos2)()2sin2cos2cos2sin2(sin)())(2sin2sin(1021010nnRNNnRmNnNmNmNnNnRmnNmNNNNmNmNNm)(2cos2)()](4[)())(1()(,01,1,4)()1(102nnRNNnRWWNnRWkFNnfkNkNkFNNnNNnNNNkknN其他8.x(n)为长为N有限长序列,)()(nxnxoe,分别为x(n)的圆周共轭偶部及奇部,也即:)](Im[)]([)],([)]([)]()([21)()()]()([21)()(0kXjnxDFTkXRnxDFTnNxnxnNxnxnNxnxnNxnxoeeoee证明:证明:)(21)(21)]([21)]([21)]([kNNXkXnNxDFTnxDFTnxDFTe)]([)(21)(21kXRkXkXe)](Im[)(21)(21)]([kXjkXkXnxDFTo9.证明:若x(n)实偶对称,即x(n)=x(N-n),则X(k)也实偶对称;若x(n)实奇对称,即x(n)=-x(N-n),则X(k)为纯虚数并奇对称。证:(1)实函数)],([)]()([21)()]()([21)]()([21)(kXRkXkXkXnNxnxnNxnxnxe又:1010)()()()()(NnNknNNNnknNkRWnNxkRWnxkX偶对称),()()()()()()(10)(101kNXkRWmxkRWmxkRWmxNNmmkNNNNmkmNNmNkmN(2))()()],(Im[)]()([21)()]()([21)]()([21)(kXnxkXjkXkXkXnNxnxnNxnxnx纯虚数1010)()()()(:)()()()(NmknNNNnknNkNNWnNxkRWnxkXkNXkXkXWnNx又奇对称),(kNX10.若已知:DFT[x(n)]=X(k)求:)]2sin()([)],2cos()([nNmnxDFTnNmnxDFT。解:)(]))(())(([21]2cos)([]))(())(([21])(~)(~[21]2cos)(~[)())(()(,))(()(~nRmkXmkXnNmnxDFTmkXmkXWnxWnxDFSnNmnxDFSnRnxnxnxnxNNNNNmnNmnNNNN同理:)(]))(())(([21]2sin)([nRmkXmkXjnNmnxDFTNNN11.若长为N的有限长序列x(n)是序列x(n)=)(nRN(1)求Z[x(n)]并画出其零极点分布;(2)求频谱)(jeX并作幅度曲线;(3)求DFT[x(n)]用封闭形式表达式,并对照)(jeX。解:(1)Z[x(n)])1(11111zzzzzNNN图略(2)2sin2sin11)(21NeeeeXNjjNjj(3))(11)(10kN12.已知x(n)是长为N的有限序列,X(k)=DFT[x(n)],现将长度扩大r倍,得长度为rN的有限长序列y(n)1,010),()(rNnNNnnxny求:DFT[x(n)]与X(k)的关系。解:101010)()()()()()(NnnrkNrNnknrNNnknNrkXWnxWnykYWnxkX13.已知x(n)是长为N的有限长序列,X(K)=DFT[x(n)],现将x(n)的每两点之间补进r-1个零点,得到一长为rN的有限长序列y(n)nNiirnrnxny其他,01,,0,),/()(求:DFT[y(n)]与X(k)的关系。解:)()()()()()(101010kXWixWnykYWnxkXNikiNrNnknrNNnknN14.若DFT[x(n)]=X(k),求证:DFT[x(n)]=NNkx))((证:.)()()()()()(:)()]([:1,010),()()(,)],([)(,)(.12)(11)()3(2sin2sin11)()2(1010101021NnnrkNrNnknrNNnknNkNkNNNnknNNjjNjjrkXWnxWnykYWnxkXkXnyDFTrNnNNnnxnynyrNrnxDFTkXNnxkN解的关系与求有限长序列的得长度为倍现将长度扩大的有限长序列是长为已知1010)())(()(~10,)()(NkknNNNnknNWkXnNxnxNNnWnxkX上式中,令k=m-n=k则:)]([))(()())((10nXDFTkNxWmXkNxNNmkmNN15.已知复有限长序列f(n)是由两实有限长序列x(n),y(n)组成f(n)=x(n)+jy(n),令已知DFT[f(n)]=F(k),求X(k),Y(k)以及x(n),y(n)。解:(1)kNNkNNbWbjWkF1111)()]()([21))](([)]([)(kNFkFnfRDFTnxDF