第二章误差和分析数据处理(练习题参考答案)9.(1)随机误差(2)系统误差(3)系统误差(4)系统误差(5)随机误差(6)随机误差10.a.错b.错c.错d.对11.(1)两位(2)四位(或不确定)(3)四位(4)两位(5)三位(6)四位12.分析天平为万分之一天平,可以读到小数点后第四位,一次读数误差±0.0001g,称量一个样品需两次读数,所以分析天平称量误差为±0.0002g。若称量样品质量为m,则0.0002100%0.1%m,m≥0.2g所以若要求误差小于0.1%时,分析天平应称取样品0.2g以上。同理,滴定一个试样,滴定管两次读数累积误差±0.02mL,若要求误差小于0.1%,则0.02100%0.1%V,V≥20mL所以若要求误差小于0.1%,滴定时所用溶液体积至少为20mL。13.(略)14.0.25640.25620.25660.25880.25704x0.25700.25420.0028TExx0.0028100%100%=1.1%0.2542rTEEx15.0.37450.37200.37300.37500.37250.37345x10.0011niixxdn—0.0011100%100%0.29%0.3734rddx——21(0.00131niixxsn)0.0013100%100%0.35%0.3734sRSDx16.设最高限和最低限分别为x最高和x最低,查表2-4,Q0.90=0.7650.11550.7650.1151xx最高最高x最高=0.11680.11510.7650.1155xx最低最低x最低=0.113817.经计算x=0.1015,s=0.0004610.10100.10151.10.00046xxGs疑40.10200.10151.10.00046xxGs疑查表2-5,G0.05,4=1.46G,所以无舍弃值。18.经计算,x=0.155,s=0.0029,查表2-3,t0.05,5=2.570.00290.1552.570.1550.003619.10.050170.050160.0710.050300.05016Q查表2-4,Q0.90,5=0.642。Q1Q0.90,所以0.05016应保留。50.050300.050190.790.050300.05016Q查表2-4,Q0.90,5=0.642。QQ0.90,所以0.05030应舍去。,fsxtn经计算,x=0.05018,s=0.000013,查表2-3,t0.05,3=3.18故0.0000130.050183.180.050180.00002420.0.54460.5426280.0005xtns查表2-3,t表=3.18,tt表,所以测定值与标准值之间有显著性差异,即测定存在系统误差。21.(1)s甲=0.0569,x甲=9.56;s乙=0.0851,x乙=9.47(2)F检验22220.08512.240.0569sFs大小查表2-6,F表=5.05,FF表,所以虽然甲的精密度稍好,但两组数据的精密度无显著性差异。可以进行t检验。(3)t检验2222112212(1)(1)50.056950.08510.0724(1)(1)55cnsnssnn1212129.569.47662.150.072466cxxnntsnn查表2-3,t表=2.23,因为tt表,所以两组数据的平均值无显著性差异。22.(1)求统计量KarlFisher法:n1=6,1x=0.749,s1=0.012GC法:n2=6,2x=0.748,s2=0.0054(2)G检验KarlFisher法可疑值:0.770;G=(0.770-0.749)/0.012=1.75查表2-5,G0.05,6=1.82G,所以0.770应保留。再计算平均值与标准偏差,然后进行F与t检验。n1=5,1x=0.744,s1=0.0048GC法可疑值:0.739;G=(0.748-0.739)/0.0054=1.7查表3-4,G0.05,6=1.82G,故0.739应予保留。(3)F检验F=220.0120.0054=4.94,查表2-6,FF0.05,5,5=5.05,说明两种方法的精密度无显著性差异,可以进行t检验。(4)t检验2222112212(1)(1)(61)0.012(61)0.00540.0094(1)(1)(61)(61)cnsnssnn1212120.7490.748660.180.009466cxxnntsnnα=0.05,125510fff,查表2-3,t0.05,10=2.23。tt0.05,10,所以两种方法的平均值无显著性差异。综上说明,两种方法的精密度相当,所得结果无显著性差异,因此气相色谱法可以替代KarlFisher法用于微量水分的含量测定。23.计算求得1.05ix,20.302ix,0.210x,sx=0.1430.486iy,20.0645iy,0.0972y,sy=0.0657,0.140iixy代入公式中,得222221()()()1()()0.140-50.2100.09720.4660.302-50.210iiiiiiiiiiiixyxyxxyyxynxynbxxxnxxxn0.0972-0.4660.210=-0.0007aybx回归方程为y=-0.0007+0.466x即A=-0.0007+0.466c12211()()(1)()()0.140-50.2100.09721.0040.1430.0657niiiiinnxyiiiixxyyxynxyrnssxxyy将A=0.135代入回归方程,求得c=0.291mmol·L-1。