1第二讲:分式与分式方程,一元二次方程及应用二:分式经典考题剖析】1.已知分式25,45xxx当x≠______时,分式有意义;当x=______时,分式的值为0.2.若分式221xxx的值为0,则x的值为()A.x=-1或x=2B、x=0C.x=2D.x=-13.(1)先化简,再求值:231()11xxxxxx,其中22x.(2)先将221(1)1xxxx化简,然后请你自选一个合理的x值,求原式的值。(3)已知0346xyz,求xyzxyz的值4.计算:(1)241222aaaa;(2)222xxx;(3)2214122xxxxxx(4)xyxyxxyxyxx3232;(5)4214121111xxxx5.阅读下面题目的计算过程:23211xxx=2131111xxxxxx①=321xx②=322xx③=1x④(1)上面计算过程从哪一步开始出现错误,请写出该步的代号。(2)错误原因是。(3)本题的正确结论是。(二):一元一次方程一:知识梳理:1.方程的分类整式方程有理方程方程分式方程无理方程22.方程的有关概念(1)方程:含有的等式叫方程。(2)有理方程:_________________________________________统称为有理方程。(3)无理方程:__________叫做无理方程。(4)整式方程:___________________________________________叫做整式方程。(5)分式方程:___________________________________________叫做分式方程。(6)方程的解:叫做方程的解。(7)解方程:_叫做解方程。(8)一元一次方程:___________________________________叫做一元一次方程。(9)二元一次方程:___________________________________叫做二元一次方程3.①解方程的理论根据是:_________________________②解方程(组)的基本思想是:多元方程要_________,高次方程要__________.③在解_____方程,必须验根.要把所求得的解代入______进行检验;4.解一元一次方程的一般步骤及注意事项:步骤具体做法依据注意事项去分母等式性质去括号乘法分配律、去括号法则移项移项法则合并同类项合并同类项法则系数化为1等式性质5.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.6.整体思想解方程组.(1)整体代入.如解方程组3(1)55(1)3(5)xyyx①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如1+3y19313x+y113x①②因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.7.两个一次函数图象的交点与二元一次方程组的解的联系:在同一直坐标系中,两个一次函数图象的交点的坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点,38.用作图象的方法解二元一次方程组:(1)将相应的二元一次方程组改写成一次函数的表达式;(2)在同一坐标系内作出这两个一次函数的图象;(3)观察图象的交点坐标,即得二元一次方程组的解.二.【例题讲解】1.解方程:12733)1(2xxx2.若关于x的方程:(3)(2)10354kxkxx与方程1252(1)3xx的解相同,求k的值。3.在代数式axbym中,当2,3,4xym时,它的值是零;当3,6,xy4m时,它的值是4;求ab、的值。4.要把面值为10元的人民币换成2元或1元的零钱,现有足够的面值为2元、1元的人民币,那么共有换法()A.5种;B.6种;C.8种;D.10种5.如图是某风景区的旅游路线示意图,其中B、C、D为风景点,E为两条路的交叉点,图中数据为相应两点的路程(单位:千米)。一学生从A处出发以2千米/小时的速度步行游览,每个景点的逗留时间均为0.5小时。(1)当他沿着路线A→D→C→E→A游览回到A处时,共用了3小时,求CE的长;(2)若此学生打算从A处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其它因素)。(二)一元二次方程一:【知识梳理】1.一元二次方程:只含有一个,且未知数的指数为的整式方程叫一元二次方程。它的一般形式是(其中、)它的根的判别式是△=;当△>0时,方程有实数;当△=0时,方程有数根;当△<0时,方程有实数根;一元二次方程根的求根公式是、(其中)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上的绝对值一半的平方;④化原方程为2(x+m)=n的形式;⑤如果n0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵公式法:公式法是用求根公式求出一元二次方程的解的方法。它是通过配方推导出来的.一元二次方程的求根公式是2(40)bac注意:用求根公式解一元二次方程时,一定要将方程化为。⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.43.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1,x2.若b2-4a<0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4)⑷注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:直接开平方法→因式分解法→公式法.二、【例题讲解】1.分别用公式法和配方法解方程:2232xx2.选择适当的方法解下列方程:(1)27(23)28x;(2)223990yy(3)22125xx;(4)2(21)3(21)20xx3.已知22222()()60abab,求22ab的值。4.解关于x的方程:2(1)20axaxa5.阅读下题的解答过程,请你判断其是否有错误,若有错误,请你写出正确答案.已知:m是关于x的方程mx2-2x+m=0的一个根,求m的值.三.分式方程一:【知识梳理】1.分式方程:分母中含有的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是(即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式5方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵验根:因为解分式方程可能出现增根,所以解分式方程必须验根。验根的方法是将所求的根代人或,若的值为零或的值为零,则该根就是增根。4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。6.分式方程的解法有和。二.例题讲解:1.解下列分式方程:25211111332552323xxxxxxxxx(); (2); ();2222213(1)1142312211xxxxxxxxxxxx(4); (5); (6)2.解方程组:11131129xyxy分析:此题不宜去分母,可设1x=A,1y=B得:1329ABAB,用根与系数的关系可解出A、B,再求xy、,解出后仍需要检验。3.若关于x的分式方程226224mxxxx有增根,求m的值。4.某市今年1月10起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.5.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。当地一公司收获这种蔬菜140吨,其加工厂生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨。但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这蔬菜全部销售或加工完毕,为此公司初定了三种可行方案:6方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。你认为哪种方案获利最多?为什么?(四)解应用题一:【知识梳理】1.列方程解应用题常用的相等关系题型基本量、基本数量关系寻找思路方法工作(工程)问题工作量、工作效率、工作时间把全部工作量看作1工作量=工作效率×工作时间相等关系:各部分工作量之和=1常从工作量、工作时间上考虑相等关系比例问题::abc甲:乙:丙=相等关系:各部分量之和=总量。设其中一分为x,由已知各部分量在总量中所占的比例,可得各部分量的代数式年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等。浓度问题稀释问题溶剂(水)、溶质(盐、纯酒精)、溶液(盐水、酒精溶液)100%溶质百分比浓度溶液溶质=溶液×百分比浓度由加溶剂前后溶质不变。两个相等关系:加溶剂前溶质质量=加溶剂后溶质质量加溶剂前溶液质量+加入溶剂质量=加入溶剂后的溶液质量加浓问题同上由加溶质前后溶剂不变。两个相等关系:加溶质前溶剂质量=加溶质后溶剂质量加溶质前溶液质量+加入溶质质量=加入溶质后的溶液质量混合配制问题等量关系:混合前甲、乙种溶液所含溶质的和=混合后所含溶质混合前甲、乙种溶液所含溶剂的和=混合后所含溶剂利息问题本息和、本金、利息、