第2讲排列与组合

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共9页第2讲排列与组合考点梳理1.排列与排列数(1)排列的定义:从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用Amn表示.(3)排列数公式:Amn=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n.(4)全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列,Ann=n·(n-1)·(n-2)·…·2·1=n!.排列数公式写成阶乘的形式为Amn=n!n-m!,这里规定0!=1.2.组合与组合数(1)组合的定义:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用Cmn表示.(3)组合数的计算公式:Cmn=AmnAmm=n!m!n-m!=nn-n-n-m+mm-,由于0!=1,所以C0n=1.(4)组合数的性质:①Cmn=Cn-mn;②Cmn+1=Cmn+Cm-1n.解决排列类应用题的主要方法(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直接处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列.组合数公式的两种形式组合数公式有两种形式,(1)乘积形式;(2)阶乘形式.前者多用于数字计算,后者多用于第2页共9页证明恒等式及合并组合数简化计算.注意公式的逆用.即由n!m!n-m!写出Cmn.考点自测1.8名运动员参加男子100米的决赛,已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续数字(如:4,5,6),则参加比赛的这8名运动员安排跑道的方式共有________种.2.若甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.3.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有________种.4.如图,将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有________种.1233122315.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是________(用数字作答).考向一排列问题【例1】有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(1)全体排成一行,其中甲只能在中间或者两边位置;第3页共9页(2)全体排成一行,其中甲不在最左边,乙不在最右边;(3)全体排成一行,其中男生必须排在一起;(4)全体排成一行,男、女各不相邻;(5)全体排成一行,男生不能排在一起;(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(7)排成前后两排,前排3人,后排4人;(8)全体排成一行,甲、乙两人中间必须有3人.【训练1】有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间.考向二组合问题【例2】某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长,又要有女生当选.第4页共9页【训练2】已知甲、乙两人从4门课程中各选修2门.(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?考向三排列、组合的综合应用【例3】将4个编号为1,2,3,4的小球放入4个编号为1,2,3,4的盒子中.(1)有多少种放法?(2)每盒至多一球,有多少种放法?(3)恰好有一个空盒,有多少种放法?(4)每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种方法?(5)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种不同的放法?【训练3】有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.有限制条件的排列、组合问题在高考中,主要考查用排列、组合知识解决实际问题.注重对学生理解、分析和解决问题的能力及分类讨论思想的考查.【示例】现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.第5页共9页高考经典题组训练1.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为________(用阶乘表示).2.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.3.由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是________.4.给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻....的着色方案共有________种,至少有两个黑色正方形相邻..的着色方案共有________种(结果用数值表示).1234565.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N+)位回文数有________个.第6页共9页第7页共9页基础达标演练一、填空题1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单,那么不同插法的种数为________.2.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为________种.3.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有________种.4.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有________种.5.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的课代表,若某女生必须担任语文课代表,则不同的选法共有________种(用数字作答).6.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案有________种.二、解答题7.在10名演员中5人能歌8人善舞,从中选出5人,使这5人能演出一个由1人独唱4人伴舞的节目,共有几种选法?8.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?第8页共9页(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?分层训练B级1.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).2.某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出有________种不同的调度方法(填数字).3.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法种数是________.4.以一个正五棱柱的顶点为顶点的四面体共有________个.5.在m(m≥2)个不同数的排列p1p2…pm中,若1≤i<j≤m时pi>pj(即前面某数大于后面某数),则称pi与pj构成一个逆序,一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n-1)…321的逆序数为an.如排列21的逆序数a1=1,排列321的逆序数a2=3,排列4321的逆序数a3=6.(1)求a4、a5,并写出an的表达式;(2)令bn=anan+1+an+1an,证明2n<b1+b2+…+bn<2n+3,n=1,2,….第9页共9页6.设整数n≥4,在集合{1,2,3,…,n}中任取两个不同元素a,b(ab),记An为满足a+b能被2整除的取法种数.(1)当n=6时,求An;(2)求An.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功