第3章狭义相对论

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《第3章狭义相对论》一选择题1.在狭义相对论中,下列说法中哪些是正确的?(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的.(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.(A)(1),(3),(4).(B)(1),(2),(4).(C)(1),(2),(3).(D)(2),(3),(4).[B]参考解答:在狭义相对论中,根据洛仑兹变换物体运动速度有上限,即不能大于真空中的光速;质量、长度、时间都是相对的,其测量结果取决于物体与观察者的相对运动状态,有动尺收缩和运钟膨胀的相对论效应。2.关于同时性的以下结论中,正确的是(A)在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生.(B)在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.(C)在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.(D)在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生.[C]参考解答:如果S系和S系是相对于运动的两个惯性系。设在S系中同一地点、同一时刻发生了两个事件,即0,01212tttxxx.将上述已知条件代入下面的洛仑兹坐标变换式中22122121)(cxxcttttvv则可得012ttt,说明在S系中也是同时发生的。这就是说,在同一地点,同一时刻发生的两个事件,在任何其他参考系中观察观测也必然是同时发生。3.两只相对运动的标准时钟A和B,从A所在惯性系观察,哪个钟走得更快?从B所在惯性系观察,又是如何呢?有以下一些说法:(1)从A所在惯性系观察,A钟走得更快.(2)从A所在惯性系观察,B钟走得更快.(3)从A所在惯性系观察,A钟走得更快;从B所在惯性系观察,B钟走得更快.(4)从A所在惯性系观察,B钟走得更快;从B所在惯性系观察,A钟走得更快.上述说法中正确的是(A)(1).(B)(2).(C)(1),(3).(D)(2),(4).[C]参考解答:根据“时间膨胀”或“原时最短”的结论可知,从A所在惯性系观察,相对静止的时钟A所指示的时间间隔是原时,它走得“快”些;而时钟B给出的时间间隔是运动时,因“时间膨胀”而走得“慢”些.同理,从B所在惯性系观察时,相对静止的时钟B给出的是原时,它走得“快”些;而时钟A给出的是运动时,因“时间膨胀”而走得“慢”些。4.在惯性系中,两个光子火箭(以光速c运动的火箭)相背运动时,一个火箭对另一个火箭的相对运动速率为(A)2c.(B)0.5c.(C)c.(D)0.99c.[C]参考解答:如图所示:两个光子火箭分别用a、b表示,设S系被固定在光子火箭b上,以地面为参考系S。令S系相对于地面参考系S运动速度为u,地面参考系S测得火箭a的速度为vx,求S系测火箭a的速度.xv即xxccuvv求:,,.)1(112ccccuuxxxvvv所以一个火箭对另一个火箭的相对运动速率为c.也可从光速不变原理得出。5.一火箭的固有长度为L,相对于地面作匀速直线运动的速度为v1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v2的子弹.在火箭上测得子弹从射出到击中靶的时间间隔是:(c表示真空中光速)(A)21vvL.(B)2vL.(C)12vvL.(D)211)/(1cLvv.[B]参考解答:L是在火箭上测得子弹从射出到击中靶的空间间隔,子弹相对于火箭的速度为v2,在火箭上测得子弹从射出到击中靶的时间间隔是2vL6.两个惯性系S和S′,沿x(x′)轴方向作匀速相对运动.设在S′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为0,而用固定在S系的钟测出这两个事件的时间间隔为.又在S′系x′轴上放置一静止于是该系.长度为l0的细杆,从S系测得此杆的长度为l,则(A)0;ll0.(B)0;ll0.(C)0;ll0.(D)0;ll0.[D]参考解答:在狭义相对论中,长度、时间都是相对的,其测量结果取决于物体与观察者的相对运动状态,有动尺收缩和运钟膨胀的相对论效应。7.在惯性系中,两个光子火箭(以光速c运动的火箭)相背运动时,一个火箭对另一个火箭的相对运动速率为(A)2c.(B)0.5c.(C)c.(D)0.99c.[C]8.根据狭义相对论力学的基本方程tpFd/d,以下论断中正确的是(A)质点的加速度和合外力必在同一方向上,且加速度的大小与合外力的大小成正比.(B)质点的加速度和合外力可以不在同一方向上,但加速度的大小与合外力的大小成正比.(C)质点的加速度和合外力必在同一方向上,但加速度的大小与合外力可不成正比.(D)质点的加速度和合外力可以不在同一方向上,且加速度的大小不与合外力大小成正比.[D]参考解答:经典力学:.dd)(ddddtmmttPFvv狭义相对论力学:,vv-mv20)/(1cmP.dddd)(ddddtmtmmttPFvvv显然,当速度v方向与加速度tddv方向不相同时,质点的加速度和合外力就不在同一方向上;另外,加速度的大小也不与合外力大小成正比。9.令电子的速率为v,则电子的动能EK对于比值v/c的图线可用下列图中哪一个图表示?(c表示真空中光速)[D]参考解答:相对论质量:20)/(1cmv-m(0m静止质量),OEKv/c1.0(A)OEKv/c1.0(B)OEKv/c1.0(C)OEKv/c1.0(D)相对论总能量:2mcE,物体静止时的能量:200cmE,相对论动能:)1/11(22200ccmEEEkv.10.设某微观粒子的总能量是它的静止能量的K倍,则其运动速度的大小为(以c表示真空中的光速)(A)1Kc.(B)21KKc.(C)12KKc.(D))2(1KKKc.[C]参考解答:相对论总能量:2222011cc/cmE0Kmv,2211cvK二填空题1.以速度v相对于地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为__c____.2.+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6×10-8s,如果它相对于实验室以0.8c(c为真空中光速)的速率运动,那么实验室坐标系中测得的+介子的寿命是___4.33×10-8s_____________s.3.在S系中的x轴上相隔为x处有两只同步的钟A和B,读数相同.在S'系的x'轴上也有一只同样的钟A',设S'系相对于S系的运动速度为v,沿x轴方向,且当A'与A相遇时,刚好两钟的读数均为零.那么,当A'钟与B钟相遇时,在S系中B钟的读数是___x/v_______;此时在S'系中A'钟的读数是_2)/(1)/(cxvv_____________.4.在惯性系中,两个光子火箭(以光速c运动的火箭)相向运动时,一个火箭对另一个火箭的相对运动速率为______c________________.5.地面上的观察者测得两艘宇宙飞船相对于地面以速度v=0.90c相向飞行.其中一艘飞船测得另一艘飞船速度的大小v′=___0.99c________________.6.地面上的观察者测得两艘宇宙飞船相对于地面以速度v=0.90c逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v′=___0.99c________________.7.设电子静止质量为me,将一个电子从静止加速到速率为0.6c(c为真空中光速),需作功____J.0141022_____________.8.当粒子的动能等于它的静止能量时,它的运动速度为_______c321_____________________.9.(1)在速度v_c321___________情况下粒子的动量等于非相对论动量的两倍.(2)在速度v___c321_________情况下粒子的动能等于它的静止能量.10.观察者甲以0.8c的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1kg的物体,则(1)甲测得此物体的总能量为__9×1016J,__________;(2)乙测得此物体的总能量为___1.5×1017J_________.三、计算题1.在K惯性系中观测到相距x=9×108m的两地点相隔t=5s发生两事件,而在相对于K系沿x方向以匀速度运动的K'系中发现此两事件恰好发生在同一地点.试求在K'系中此两事件的时间间隔.解:设两系的相对速度为v,根据洛仑兹变换,对于两事件,有2)/(1ctxxvv22)/(1(cx)/cttvv由题意:0x可得x=vt2)/(1cttv,由上两式可得2)/(1cttv2/122))/()((cxt=4s2.在K惯性系中,相距x=5×106m的两个地方发生两事件,时间间隔t=10-2s;而在相对于K系沿正x方向匀速运动的K'系中观测到这两事件却是同时发生的.试计算在K'系中发生这两事件的地点间的距离x'是多少?解:设两系的相对速度为v.根据洛仑兹变换,对于两事件,有2)/(1ctxxvv22)/(1(cx)/cttvv由题意:0t可得xct)/(2v及2)/(1cxxv由上两式可得x2/1222])/()[(ctcx2/1222][tcx=4×106m3.一艘宇宙飞船的船身固有长度为L0=90m,相对于地面以v0.8c(c为真空中光速)的匀速度在地面观测站的上空飞过.(1)观测站测得飞船的船身通过观测站的时间间隔是多少?(2)宇航员测得船身通过观测站的时间间隔是多少?解:(1)观测站测得飞船船身的长度为20)/(1cLLv54m则t1=L/v=2.25×10-7s(2)宇航员测得飞船船身的长度为L0,则t2=L0/v=3.75×10-7s4.一飞船和慧星相对于地面分别以0.6c和0.8c速度相向运动,在地面上观察,5s后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?解:两者相撞的时间间隔Δt=5s是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v=0.6c运动的系统的本征时,根据时间膨胀公式2`1(/)ttvc,可得时间间隔为2`1(/)ttvc=4(s).5.在惯性系中,有两个静止质量都是m0的粒子A和B,它们以相同的速率v相向运动,碰撞后合成为一个粒子,求这个粒子的静止质量M0.解:设粒子A的速度为Av,粒子B的速度为Bv,合成粒子的运动速度为V.由动量守恒得220220220/1/1/1cVVMcmcmBBAAvvvv因1vvvBA,且BAvv,所以0V.即合成粒子是静止的.由能量守恒得2022202220/1/1cMccmccmvv解出2200/12cmMv6.两个质点A和B,静止质量均为m0.质点A静止,质点B的动能为6m0c2.设A、B两质点相撞并结合成为一个复合质点.求复合质点的静止质量.解:设复合质点静止质量为M0,运动时质量为M.由能量守恒定律可得2202mccmMc其中mc2为相撞前质点B的能量.202020276cmcmcmmc故08mM设质点B的动量为pB,复合质点的动量为p.由动量守恒定律Bpp利用动量与能量关系,对于质点B可得42042420224cqmcmcmcpB对于复合质点可得420424202264cmcMcMcP由此可求得20202020164864mmmM

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功