A级课时对点练(时间:40分钟满分:60分)一、选择题(本题共5小题,每小题5分,共25分)1.数列11×3,13×5,15×7,…,12n-12n+1…的前n项和为()A.n2n-1B.n2n+1C.2n2n+1D.2n2n-1解析:∵12n-12n+1=1212n-1-12n+1∴Sn=11×3+13×5+…+12n-12n+1=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.答案:B2.已知数列{an}的通项公式是an=2n-12n,其中前n项和Sn=32164,则项数n等于()A.13B.10C.9D.6解析:∵an=2n-12n=1-12n,∴Sn=n-12+122+…+12n=n-1+12n,而32164=5+164,∴n-1+12n=5+164,∴n=6.答案:D3.正整数数列中,前50个偶数的平方和与50个奇数的平方和的差是()A.0B.5050C.2525D.-5050解析:由题意知:(22-12)+(42-32)+…+(1002-992)=3+7+…+199=5050.答案:B4.已知数列{an}中,a1=1,a2=2+3,a3=4+5+6,a4=7+8+9+10,…,则a10的值为()A.750B.610C.510D.505解析:a10=46+47+…+55=505.答案:D5.(2010·济宁二模)若数列{an}的通项为an=4n-1,bn=a1+a2+…+ann,n∈N*,则数列{bn}的前n项和是()A.n2B.n(n+1)C.n(n+2)D.n(2n+1)解析:a1+a2+…+an=(4×1-1)+(4×2-1)+…+(4n-1)=4(1+2+…+n)-n=2n(n+1)-n=2n2+n,∴bn=2n+1,b1+b2+…+bn=(2×1+1)+(2×2+1)+…+(2n+1)=n2+2n=n(n+2).答案:C二、填空题(本题共3小题,每小题5分,共15分)6.求和2+22+222+…+22…2n个=________.解析:原式=29[(10-1)+(100-1)+(1000-1)+…+(10n-1)]=2081(10n-1)-2n9.答案:2081(10n-1)-2n97.(2010·潍坊一模)已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列1bnbn+1的前n项和Sn=________.解析:由已知条件可得q4-1=a4a1=813=27,即q=3,∴an+1an=q=3,则bn+1-bn=log3an+1-log3an=log3an+1an=1,又b1=log3a1=log33=1,可得等差数列{bn}的通项公式为bn=n,∴1bnbn+1=1nn+1=1n-1n+1,∴Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.答案:nn+18.已知f(x)=4x4x+2,求f111+f211+…+f1011=________.解析:因为f(x)+f(1-x)=4x4x+2+41-x41-x+2=4x4x+2+44+2·4x=4x4x+2+22+4x=1.所以f111+f1011=f211+f911=…=f511+f611=1.∴f111+f211+…+f1011=5.答案:5三、解答题(本题共2小题,每小题10分,共20分)9.(2010·海口调研)在等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=S2b2.(1)求an与bn;(2)求1S1+1S2+…+1Sn.解:(1)由已知可得q+3+a2=12,q=3+a2q,解得:q=3或q=-4(舍去),a2=6.∴an=3+(n-1)·3=3n,bn=3n-1.(2)∵Sn=n3+3n2,∴1Sn=2n3+3n=231n-1n+1∴1S1+1S2+…+1Sn=231-12+12-13+13-14+…+1n-1n+1=231-1n+1=2n3n+1.10.已知数列{an}的前n项和为Sn,且当n∈N*时满足Sn=-3n2+6n,数列{bn}满足bn=12n-1,数列{cn}满足cn=16anbn.(1)求数列{an}的通项公式an;(2)求数列{cn}的前n项和Tn.解:(1)当n=1时,a1=S1=3,当n≥2时,an=Sn-Sn-1=9-6n.∴an=9-6n(n∈N*).(2)∵bn=12n-1,cn=16anbn=9-6n612n-1=(3-2n)12n,∴Tn=c1+c2+…+cn=12-122+…+(3-2n)12n.利用错位相减法,得Tn=(2n+1)12n-1.B级素能提升练(时间:30分钟满分:40分)一、选择题(本题共2小题,每小题5分,共10分)1.已知数列{an}的前n项和Sn=n2-4n+2,则|a1|+|a2|+…+|a10|等于()A.66B.65C.61D.56解析:当n=1时,a1=S1=-1;当n≥2时,an=Sn-Sn-1=n2-4n+2-[(n-1)2-4(n-1)+2]=2n-5,∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1|+|a2|+…+|a10|=1+1+81+152=2+64=66.答案:A2.有限数列{an}中,Sn为{an}的前n项和,若把S1+S2+…+Snn称为数列{an}的“优化和”,现有一个共2009项的数列:a1,a2,a3,…,a2009,若其“优化和”为2010,则有2010项的数列:1,a1,a2,a3,…,a2009的优化和为().A.2009B.2010C.2011D.2012解析:依题意,S1+S2+…+S20092009=2010,∴S1+S2+…+S2009=2009×2010.又数列1,a1,a2,…,a2009相当于在数列a1,a2,…,a2009前加一项1,∴其优化和为1+S1+1+S2+1+…+S2009+12010=2009×2010+20102010=2010.答案:B二、填空题(本题共2小题,每小题5分,共10分)3.已知数列{an},an=1n+n+1(n∈N*),且数列{an}的前n项和Sn=9,那么n的值为________.解析:∵an=1n+n+1=n+1-n∴Sn=(2-1)+(3-2)+…+(n+1-n)=n+1-1∴n+1-1=9∴n=99.答案:994.(2010·南京三模)正整数按下列方法分组{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,记第n组中各数之和为An;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},…,记第n组中后一个数与前一个数的差为Bn,则An+Bn=________.解析:由题意知,前n组共有1+3+5+…+(2n-1)=n2个数,所以第n-1组的最后一个数为(n-1)2,第n组的第一个数为(n-1)2+1,第n组共有2n-1个数,所以根据等差数列的前n项和公式可得An=[n-12+1]+[n-12+2n+1]2(2n-1)=[(n-1)2+n](2n-1),而Bn=n3-(n-1)3,所以An+Bn=2n3.答案:2n3三、解答题(本题共2小题,每小题10分,共20分)5.(2010·淄博模拟)设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).(1)求数列{an}的通项公式an;(2)设数列1anan+1的前n项和为Tn,求证:15≤Tn<14.(1)解:由Sn=nan-2n(n-1)得an+1=Sn+1-Sn=(n+1)an+1-nan-4n,即an+1-an=4.∴数列{an}是以1为首项,4为公差的等差数列,∴an=4n-3.(2)证明:Tn=1a1a2+1a2a3+…+1anan+1=11×5+15×9+19×13+…+14n-3×4n+1=141-15+15-19+19-113+…+14n-3-14n+1=141-14n+1<14.又易知Tn单调递增,故Tn≥T1=15,得15≤Tn<14.6.已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上.(1)求数列{an}的通项公式;(2)设bn=anlog2an,求数列{bn}的前n项和Tn.解:(1)由题意,Sn=2n+2-4,n≥2时,an=Sn-Sn-1=2n+2-2n+1=2n+1,当n=1时,a1=S1=23-4=4,也适合上式,∴数列{an}的通项公式为an=2n+1,n∈N*.(2)∵bn=anlog2an=(n+1)·2n+1,∴Tn=2·22+3·23+4·24+…+n·2n+(n+1)·2n+1,①2Tn=2·23+3·24+4·25+…+n·2n+1+(n+1)·2n+2.②②-①,得Tn=-23-23-24-25-…-2n+1+(n+1)·2n+2=-23-231-2n-11-2+(n+1)·2n+2=-23-23(2n-1-1)+(n+1)·2n+2=(n+1)·2n+2-23·2n-1=(n+1)·2n+2-2n+2=n·2n+2.