第5章核内质子排列规律决定核外电子排列规律

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

核内质子排列规律决定核外电子排列规律一、原子核外电子排布的原理处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守泡利不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。1.最低能量原理电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f、g……的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、4s、3d、4p、4d……2.泡利不相容原理我们已经知道,一个电子的运动状态要从4个方面来进行描述,即它所处的电子层、电子亚层、电子云的伸展方向以及电子的自旋方向。在同一个原子中没有也不可能有运动状态完全相同的两个电子存在,这就是泡利不相容原理所告诉大家的。根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的自旋方向必定相反。也就是说,每一个轨道中只能容纳两个自旋方向相反的电子。这一点好像我们坐电梯,每个人相当于一个电子,每一个电梯相当于一个轨道,假设电梯足够小,每一个电梯最多只能同时供两个人乘坐,而且乘坐时必须一个人头朝上,另一个人倒立着(为了充分利用空间)。根据泡利不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;d亚层有5个轨道,总共可以容纳10个电子。我们还得知:第一电子层(K层)中只有1s亚层,最多容纳两个电子;第二电子层(L层)中包括2s和2p两个亚层,总共可以容纳8个电子;第3电子层(M层)中包括3s、3p、3d三个亚层,总共可以容纳18个电子……第n层总共可以容纳2n2个电子。3.洪特规则从光谱实验结果总结出来的洪特规则有两方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于全满(s2、p6、d10、f14)半满(s1、p3、d5、f7)全空(s0、p0、d0、f0)时比较稳定。这类似于我们坐电梯的情况中,要么电梯是空的,要么电梯里都有一个人,要么电梯里都挤满了两个人,大家都觉得比较均等,谁也不抱怨谁;如果有的电梯里挤满了两个人,而有的电梯里只有一个人,或有的电梯里有一个人,而有的电梯里没有人,则必然有人产生抱怨情绪,我们称之为不稳定状态。4、核外电子排布的方法对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数),如24号元素铬,其原子核外总共有24个电子,然后将这24个电子从能量最低的1s亚层依次往能量较高的亚层上排布,只有前面的亚层填满后,才去填充后面的亚层,每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。最外层电子到底怎样排布,还要参考洪特规则,如24号元素铬的24个核外电子依次排列为1s22s22p63s23p64s23d4根据洪特规则,d亚层处于半充满时较为稳定,故其排布式应为:1s22s22p63s23p64s13d5最后,按照人们的习惯“每一个电子层不分隔开来”,改写成1s22s22p63s23p63d54s1用洪特规则可以解释为什么Cr原子的外层电子排布为3d54s1而不是3d44s2,Cu原子的外层电子排布为3d104s1而不是3d94s2。核外电子排布的原理是从大量事实中概括出来的一般规律,绝大多数原子核外电子的实际排布与这些原理是一致的。但是随着原子序数的增大,核外电子排布变得复杂,用核外电子排布的原理不能满意地解释某些实验的事实。在学习中,我们首先应该尊重事实,不要拿原理去适应事实。也不能因为原理不完善而全盘否定原理。科学的任务是承认矛盾,不断地发展这些原理,使之更加趋于完善。5、有许多老的问题,在得到答案的同时就得了了新的理论。1、是什么因素由谁决定了“核外电子有强列的排列规律”?决定电子排列规律的是电子本身性质,还是核内质子中子?2、电子高速自旋:是以电子自身一点在自旋,还是以一个小半径在旋转?为什么要自旋?自旋线速度是多少?谁决定电子的自旋?3、电子的高速自旋正是现在宇宙产生的原因。也许根本就没人相信:宇宙的来源就是这么简单?4、同一轨道上的两个电子自旋方向真的是不相同还是观察时使用照物发生变化而出现了错误结论?二、原始态的N宇宙首先申明:组成宏观宇宙的三种粒子是中子质子电子,本文只研究这三种,不研究太小的不能直接组成物质的粒子,也不研究中子质子由什么东东组成。全世界在没有搞清楚中子质子电子结合性质,没搞清楚核结构和核力性质,就去研究质子中子由什么组成是完全在浪费全球实验资源,根本没的必要。也不要去相信科学家,90%以上的科学家只是书本知识丰富而已。1、质子不自旋时电子运动状态宇宙产生于奇点,还是产生于一个金蛋,这些不重要。但宏观物质中质子产生于中子这是必须的。所以我们认为原始宇宙要么是由冷纯中子组成,要么某一瞬间原始宇宙由冷纯中子组成。原始温度一定是个极限温度,感谢许多科学家为我们找到了一个极限温度——绝对零度(0K)。原始宇宙也一样被死亡的最后阶段的星系冷核塌缩碰撞。绝对零度的中子被外界最后塌缩星系碰撞,许许多多的中子被碰分裂出许多质子和电子,绝对零度的质子不会自旋,分裂出的电子由质子决定运动状态,质子不自旋不作圆周旋转,电子也一样不会自旋不用圆周旋转。如果质子不自旋,根本没有任何力量阻止电子回规质子。冷电子的结果也只能与质子中和,变成新的冷中子。只要温度不上升,原始宇宙永远这样寂寞。由此可看出温度是决定质子自旋的根本动力,而质子是决定电子运动状态的根本原因。下面推论:当N宇宙产生时更能证明温度是质子的生命。温度是决定质子自旋的根本动力。温度是决定质子自旋的根本动力,可以由热力学原理反推:温度越低物质运动越慢,当温度接近绝对零度时,物质原子不再作运动,原子核也不再作太大的转动。科学家得出绝对零度是不能达到的,绝对零度真的不能达到吗?如果绝对零度存在,原子核中重要粒子质子运动状态会怎么样?如果存在这个极限:绝对零度存在,质子运动状态一定达到一个极限——静止不动。一但质子不再自旋,电子不再受任何力量支持运动状态,也只好与质子中和,成为一个冷中子。要证实这个理论也不是不可能:太阳系中,天王星是太阳系内温度低的行星,最低的温度只有49K(-224℃),海海星比原来想像的更亮、更冷和更小,表面温度为-240℃,冥王星的表面温度知道很不很清楚,科学家认为大概在35到45K(-238到-228℃)之间。我认为如果按天天星到海王星下降了16℃计算,则冥王星的表面温度应该在-256℃以下。那么,如果冥王星(或柯伊伯带行星)外还有星球,若也按下降了16℃计算,那它温度应在-273℃左右了。科学家真的有能力,他们发现冥王星运动状态受到外围A行星影响,而到现在为止科学家并汉有发现A行星。按温度下降来看A行星已经到达了绝对零度,也就是说A行星就是变成了一块大的冷中子球。按发现一般行星的方法,科学家永远发现不了它的形状,若知道冷中子性质,科学家也许能感知到它的存在。科学家发现宇宙中有许多暗物质,那这些冷中子块就是暗物质的根本来源。大的星系暴发时物质分布还是较均匀的,星系与星系间不可能是真空的,之间的物质在绝对零度时会是什么状态?冷中子块就是其间的暗物质。如果将研究中子质子的组成所用的资金,用来制造两只飞船,一只能自行发热保持体温,一只不发热,一同发向太阳的外围,若有一天一只能发回信息,一只不能发回信息而失终。所有的问题就解决了。去证明吧:温度是决定质子自旋的根本动力。(也许原始宇宙本身因压力大而具有一定高温,这个环境相当于常压下的绝对零度的环境范围,整个研究都是以这种基态为原则进行研究的。以下也一样。)而质子是决定电子运动状态的根本原因。科学家还真有能力,他们发现质子上正电荷分布在一个很小的范围内,(霍夫施塔特早年用快电子打击质子中子实验时发现:质子的电荷分布在一个小范围内,而中子在这小范围的正电荷外围分布着小圈负电荷。这些“小范围”与整个质子中子体积比较相当于一个小小的点。)电子与它中和时也正是这小地方的中心。这个小范围的正电荷正是控制核外电子的中心。当质子静止不动不自旋时,分裂到外的电子只受正负电荷间的库仑引力作用,再没有其它任何力量阻止它返回质子上的正电荷区,此时只有中和现象发生。两者间什么时候有斥力出现,什么时候就产生了宏观宇宙。2、质子无规律非光速转动时,电子运动状态原始宇宙继续被死亡后的星系冷核塌缩碰撞,假设这时温度上升了万分之一开,中子撞裂的质子有了一些运动状态——非光速转动,撞出的电子受库仑力作用也随那点正电荷非光速转动,正电荷随质子转动时产生一点点与电子的斥力,这个斥力还不能阻止电子再次与质子中和。原始宇宙还是一样冷悽。三、N宇宙的在一次偶然中产生1、质子上正电荷绕质子半径光速自旋,电子运动状态。原始宇宙继续被死亡后的星系冷核塌缩碰撞,新的一页开始了,温度极速上升,质子高速旋转,分裂出的电子受质子正电荷控制高速旋转,并不断的中和又分裂。终于有了一次偶然的机会:质子上正电荷那一点以质子半径为半径绕主轴线速度为光速高速旋转——质子自旋产生了。新的宇宙就从这点开始了。科学家没有发现这个质子的产生,但科学家们确能计算出这个质子这样自旋产生的一个特殊的力量,(他们没算过,但能算出),对相邻质子或外围电子而言这个力的名字叫安培力,是磁场对外围运动电荷产生的力的作用。质子正电荷绕半径光速自旋产生一个电流环,电流环产生一个强磁场,组成质子中子的物质是易磁化物质,使这个磁场强度加强4倍左右,这个强磁场对外围电流或相邻电流环有强力的作用,就叫安培力。这里有个比偶然还要奇特的的事件发生了:这个安培力对相邻同向自旋的质子(同时质子间库仑斥力共同作用下距离在1-3倍质子直径内表现为引力)是吸引力作用,而对受质子上正电荷控制的相同方向自旋的电子正好是斥力作用。宏观宇宙就在这奇妙中产生了。还有必要具体计算么?没有必要了,知道半径、速度、电荷大小,中国4亿大学生人人都能计算了,小儿科麻。电子运动状态怎样?电子受质子正电荷控制,其运动状态与质子上正电荷点运动状态完全一样,但要自由得多。电子受正电荷控制绕一点(不在电子上的点)光速旋转,旋转半径为质子半径;这就是电子的“自旋”,并不是以自身为点真正的自旋。所以,这里特别更证:电子的自旋——是以质子半径为半径以光速为线速度的高速旋转。如果只有一个质子和一个电子,且处于基态,可以看到电子与质子正好在同一轴上同向自旋。质子产生的强磁对同向自旋的电子电流环是个强力的斥力作用。当电子靠近质子时这个斥力迅速变大,大大大于与正电荷的库仑引力而并排斥开。当电子远离质子时,这个斥力迅速减小,质子电子间库仑引力起主要作用,电子又被吸引。再考虑作用其它运动所需的向心力,电子终将在一定位置与质子间力达到均衡。宏观物质由此产生。小儿科的计算就不算了,这个距离大约为10-10米左右。如图5-1受控电子为什么只能以光速与质子同轴自旋?质子上正电荷光速自旋,电子要受控制只能以光速相跟上;如果电子大于质子半径要跟上质子正电荷,那电子就必须以大于光速跟上质子自旋,光速是个极限,大于光速是不可能的,电子也就只能回规质子半径。如果电子自旋半径小于质子半径,电子可

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功