材料力学教案1第7讲教学方案——扭转时的内力、薄壁圆筒的扭转基本内容扭转时的内力、薄壁圆筒的扭转。教学目的1、掌握外力偶矩的计算方法,扭矩的计算和扭矩图的绘制。2、理解薄壁圆筒的定义,掌握薄壁圆筒扭转时横截面上剪应力的计算。3、深入理解剪应力互等定理和剪切胡克定律。4、剪切变形能和比能的定义和计算。重点、难点本节重点:外力偶矩的计算和扭矩图的绘制,剪应力互等定理和剪切胡克定律。本节难点:外力偶矩的计算,剪应力互等定理的理解。第七讲2第三章扭转§3-1概述工程上的轴是承受扭转变形的典型构件,如图4-1所示的攻丝丝锥,图4-2所示的桥式起重机的传动轴以及齿轮轴等。扭转有如下特点:1.受力特点:在杆件两端垂直于杆轴线的平面内作用一对大小相等,方向相反的外力偶——扭转力偶。其相应内力分量称为扭矩。2.变形特点:横截面绕轴线发生相对转动,出现扭转变形。若杆件横截面上只存在扭矩一个内力分量,则这种受力形式称为纯扭转。§3-2外力偶矩与扭矩的计算扭矩图1.外力偶矩m如图4-3所示的传动机构,通常外力偶矩m不是直接给出的,而是通过轴所传递的功率N和转速n由下列关系计算得到的。nNm9550(4-1a)如轴在m作用下匀速转动角,则力偶做功为mA,由功率定义mdtdmdtdAN。角速度与转速n(单位为转/分,即r/min)。关系为60/2n(单位为弧度/秒,rad/s)。由于1kW=1000N·m/s,N千瓦的功率相当于每秒钟作功NW1000,单位为N·m;而外力偶在1秒钟内所作的功为mn2mW/60(N·m)材料力学教案3由于二者作的功应该相等,则有mnN21000/60由此便得(4-1)式。式中:N—传递功率(千瓦,kW)n—转速(r/min)如果传递功率单位是马力(PS),由于1PS=735.5N·m/s,则有nNm7024(N·m)(4-1b)式中:N—传递功率(马力,PS)n—转速(r/min)2.扭矩T求出外力偶矩m后,可进而用截面法求扭转内力——扭矩。如图4-4所示圆轴,由0xm,从而可得A—A截面上扭矩T0mT,mTT称为截面A—A上的扭矩;扭矩的正负号规定为:按右手螺旋法则,T矢量离开截面为正,指向截面为负。或矢量与横截面外法线方向一致为正,反之为负。例3-1传动轴如图4-5a所示,主动轮A输入功率50AN马力,从动轮B、C、D输出功率分别为15CBNN马力,20DN马力,轴的转速为minr/300n。试画出轴的扭矩图。解:按外力偶矩公式计算出各轮上的外力偶矩mN11707024nNmAAmN3517024nNmmBCBmN4687024nNmDD从受力情况看出,轴在BC、CA、AD三段内,各截面上的扭矩是不相等的。现在用截面法,根据平衡方程计算各段内的扭矩。第七讲4在BC段内,以IT表示截面I—I上的扭矩,并任意地把IT的方向假设为如图4-5b所示。由平衡方程0mx,有0BmT得mN351BmT负号说明,实际扭矩转向与所设相反。在BC段内各截面上的扭矩不变,所以在这一段内扭矩图为一水平线(图4-5e)。同理,在CA段内,由图4-5c,得0BCIImmTmN702BCIImmT在AD段内(图4-5d),0DIIImTmN468mTDIII与轴力图相类似,最后画出扭矩图如图4-5e其中最大扭矩发生于CA段内,且mN702maxT。对上述传动轴,若把主动轮A安置于轴的一端(现为右端),则轴的扭矩图如图4-6所示。这时,轴的最大扭矩mN1170maxT。显然单从受力角度,图4-5所示轮子布局比图4-6合理。§3-3薄壁圆筒的扭转材料力学教案5当空心圆筒的壁厚t与平均直径D(即2r)之比201Dt时称为薄壁圆筒.1.剪应力与剪切互等定理若在薄壁圆筒的外表面画上一系列互相平行的纵向直线和横向圆周线,将其分成一个个小方格,其中代表性的一个小方格如图4-7a所示。这时使筒在外力偶m作用下扭转,扭转后相邻圆周线绕轴线相对转过一微小转角。纵线均倾斜一微小倾角从而使方格变成菱形(见图4-7b),但圆筒沿轴线及周线的长度都没有变化。这表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切于截面的剪应力,因为筒壁的厚度t很小,可以认为沿筒壁厚度剪应力不变,又根据圆截面的轴对称性,横截面上的剪应力沿圆环处处相等。根据如图4-7c所示部分的平衡方程0xm,有rrtm2trm22(4-2)如图4-7d是从薄壁圆筒上取出的相应于4-7a上小方块的单元体,它的厚度为壁厚t,宽度和高度分别为dx,dy。当薄壁圆筒受扭时,此单元体分别相应于p-p,q-q圆周面的左、右侧面上有剪应力,因此在这两个侧面上有剪力tdy,而且这两个侧面上剪力大小相等而方向相反,形成一个力偶,其力偶矩为dxtdy)(。为了平衡这一力偶,上、下水平面上也必须有一对剪应力'作用(据0Y,也应大小相等,方向相反)。对整个单元体,必须满足0zm,即dytdxdxdyt所以(4-3)上式表明,在一对相互垂直的微面上,垂直于交线的剪应力应大小相等,方向共同指向或背离交线。这就是剪应力互等定理。图表-7d所示单元体称纯剪切单无体。2.剪应变与剪切胡克定律与图4-7b中小方格(平行四边形)相对应,图4-7e中单元体的相对两侧面发生微小的相对错动,使原来互相垂直的两个棱边的夹角改变了一个微量,此直角的改变量称为剪应变或角应变。如图4-7b所示若为圆筒两端的相对扭转角,l为圆筒的长度,则剪应变为lr(4-4)薄圆筒扭转试验表明,在弹性范围内,剪应变与剪应力第七讲6成正比,即G(4-5)式(4-5)为剪切胡克定律;G称为材料剪切弹性模量,单位:GPa。对各向同性材料,弹性常数GE,,三者有关系12EG(4-6)3.变形能与比能若从薄壁圆筒中取出受纯剪切的单元体如图4-8所示,由于变形的相对性,可设单元体左侧面不动,右侧面上的剪力由零逐渐增至dydz,右侧面因错动沿方向的位移由零增至dx。因此剪力所作的功为10dxddydzdWdW等于单元体内储存的变形能dU,故剪切单元体的变形能为dVddWdU)(10(4-7)其中)(。以单元体的体积dV除dU得单位体积内的剪切变形能,即比能为10ddVdUu对图4-8所示线弹性情况,当剪应力在剪切比例极限以内时,G,有2221221GGu(4-8a)对图4-8所示线弹性关系(比例极限以内),有tdVdU21对图4-7b所示受扭薄壁圆筒,由于其剪应力与剪应变均处处相同,则整个圆筒的变形能为VrU21=rtllrtrm22212m21(4–8b)