生物化学自学内容问题讨论1、试述环湖精的结构,这一结构赋予了他怎样的特性?他在工业上有和应用?结构:环糊精分子具有略呈锥形的中空圆筒立体环状结构,在其空洞结构中,外侧上端(较大开口端)由C2和C3的仲羟基构成,下端(较小开口端)由C6的伯羟基构成,具有亲水性,而空腔内由于受到C-H键的屏蔽作用形成了疏水区。特性:1)它既无还原端也无非还原端,没有还原性;2)在碱性介质中很稳定,但强酸可以使之裂解;3)只能被α-淀粉酶水解而不能被β-淀粉酶水解,对酸及一般淀粉酶的耐受性比直链淀粉强;4)在水溶液及醇水溶液中,能很好地结晶;5)无一定熔点,加热到约200℃开始分解,有较好的热稳定性;6)无吸湿性,但容易形成各种稳定的水合物;7)它的疏水性空洞内可嵌入各种有机化合物,形成包接复合物,并改变被包络物的物理和化学性质;8)可以在环糊精分子上交链许多官能团或将环糊精交链于聚合物上,进行化学改性或者以环糊精为单体进行聚合。工业上的应用:改性环糊精的开发及应用研究正在大力发展中,而它在食品工业中的应用虽刚刚起步,但已显示出较大的优越性及很高的理论研究和应用价值。特别值得提出的是其作为酶模型以及自组装与分子识别的主体将有着不可估量的发展前景。利用环糊精的疏水空腔生成包络物的能力,可使食品工业上许多活性成分与环糊精生成复合物,来达到稳定被包络物物化性质,减少氧化、钝化光敏性及热敏性,降低挥发性的目的,因此环糊精可以用来保护芳香物质和保持色素稳定。环糊精还可以脱除异味、去除有害成分,如去除蛋黄,稀奶油等食品中的大部分胆固醇;它可以改善食品工艺和品质,如在茶叶饮料的加工中,使用β-环糊精转溶法既能有效抑制茶汤低温浑浊物的形成,又不会破坏茶多酚、氨基酸等赋型物质,对茶汤的色度、滋味影响最小。此外,环糊精还可以用来乳化增泡,防潮保湿,使脱水蔬菜复原等。2、试问糖蛋白、糖脂各有哪些种类?其有何生物学意义?糖蛋白糖蛋白普遍存在于动物、植物及微生物中,种类繁多,功能广泛。按存在方式分为三类:1、可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌的粘液中。血浆蛋白除白蛋白外皆为糖蛋白。可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等。2、膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。亲水肽段暴露于膜外。糖链连接在亲水肽段并有严格的方向性。在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段的表面标志或表面抗原。3、结构糖蛋白,为细胞外基质中的不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。它们的功能不仅仅是作为细胞外基质的结构成分起支持、连接及缓冲作用,更重要的是参与细胞的识别、粘着及迁移,并调控细胞的增殖及分化。主要生物学功能为细胞或分子的生物识别,如卵子受精时精子需识别卵子细胞膜上相应的糖蛋白。受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白。糖脂糖脂亦分为两大类:糖基酰甘油和糖鞘脂。糖鞘脂又分为中性糖鞘脂和酸性糖鞘脂。鞘糖脂分布在膜脂双层的外侧层中,非极性的碳氢长链埋在外侧脂层中,极性的糖链伸展到胞外水相中。用有机溶剂或去垢剂能将鞘糖脂从膜中抽提出来。另外,在细胞内有极少量糖脂,是糖链合成过程的中间载体。功能:细胞膜上的鞘糖脂与细胞生理状况密切相关。鞘糖脂的组成,无论是神经酰胺部分还是糖链部分,都表现出一定的种族、个体、组织以及同一组织内各部分细胞的专一性。即使同一类细胞,在不同的发育阶段,鞘糖脂的组成也不同。正因为某些类型鞘糖脂是某种细胞在某个发育阶段所特有的,所以糖脂常常被作为细胞表面标志物质。糖脂又是细胞表面抗原的重要组分,某些正常细胞癌化后,表面糖脂成分有明显变化;一些已分离出来的癌细胞特征抗原,也已证明是糖脂类物质。细胞表面的糖脂还是许多胞外生理活性物质的受体参与细胞识别和信息交流过程。3、简述蛋白质、氨基酸分离纯化的基本方法及原理。蛋白质1、沉淀,1、盐析法盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。2、有机溶剂沉淀法有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。3、蛋白质沉淀剂蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。4、聚乙二醇沉淀作用聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。5、选择性沉淀法根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。4、层析:利用蛋白质在固定相与流动相之间不同的分配比例,达到分离目的的技术。a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能同时入孔内而径直流出。5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。氨基酸几乎所有的氨基酸分离纯化工艺均利用了氨基酸在不同的pH值时电荷量不同这一特性。氨基酸的分离纯化方法主要有:沉淀法、离子交换法、萃取法、吸附法、膜分离法及结晶法等。在生产中常利用各种氨基酸在水和乙醇等溶剂中溶解度的差异,将氨基酸彼此分离。如胱氨酸和酪氨酸在水中极难溶解,而其它氨基酸则比较易溶;酪氨酸在热水中溶解度大,而胱氨酸则无大差别。根据此性质,即可把它们分离出来,并且互相分开。另外,可以利用氨基酸的两性解离有等电点的性质。由于氨基酸在等电点时溶解度最小,最容易析出沉淀,所以利用溶解度法分离氨基酸时,也常结合等电点沉淀法。其某些氨基酸可以与一些有机或无机化合物结合,形成结晶性衍生物沉淀,利用这种性质向混合氨基酸溶液中加入特定的沉淀剂,使目标氨基酸与沉淀剂沉淀下来,达到与其它氨基酸分离的目的。4、试论述有关酶的多样性的机理。随着生物化学,分子生物学等生命科学的发展,迄今为止已经发现4000多种酶。虽然一种酶催化一种反应,不同的酶催化催化不同的反应。但酶的催化活性不是一成不变的,有些酶在不同条件下,其结构发生变化使活性改变;有些酶具有不同结构形式,从而具有不同的催化效率,甚至不同的催化性质;有的酶一种酶分子甚至具有集中不同的功能;酶的本质也不仅仅是蛋白质,现在发现的RNA也具有酶的催化特征。所有这些均说明,酶的结构和功能都是多种多样的,是变化的,动态的,也正因为如此,才构成了生物体内物质代谢的复杂性,多样性和统一性以及对于多变环境的适应性。降低反应活化能在任何化学反应中,反应物分子必须超过一定的能阈,成为活化的状态,才能发生变化,形成产物。这种提高低能分子达到活化状态的能量,称为活化能。催化剂的作用,主要是降低反应所需的活化能,以致相同的能量能使更多的分子活化,从而加速反应的进行。酶能显著地降低活化能,故能表现为高度的催化效率。5、试述糖代谢在工业上的应用。