第一章计数原理(复习教案)(学生)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共12页第一章计数原理复习导学案一.学习目标1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.二.知识网络第一课两个原理一.知识梳理1.分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做n步有mn种不同的方法,那么完成这件事共有N=种不同的方法.3.解题方法:枚举法、插空法、隔板法.二.基础自测1.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?组合排列组合二项式定理两个计数原理排列排列概念排列数公式组合概念组合数公式组合数性质应用通项公式二项式定理二项式系数性质应用第2页共12页2.(09重庆卷)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).3.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.4.(09全国卷)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有5.(09浙江卷)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).三.典例剖析例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?练习:1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?练习:2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?第3页共12页例3(16分)现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?练习:3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?四.自主检测一.选择题1.(09北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.6482.(08·全国Ⅰ文)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种3.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.60B.48C.42D.36第4页共12页二、填空题4.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有种.答案325.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”共有个.答案59046.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1942的“简单的”有序数对的个数是.答案300三、解答题7.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?8.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?9.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.10.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?第5页共12页第二课排列与组合一.知识梳理排列组合1.概念2.公式3.性质二.基础自测1.(09北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为;2.(09湖北卷文)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有种.(用式子表示)4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是(用式子表示).5.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).三.典例剖析例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.练习:1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3125的数.第6页共12页例2男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.练习:2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?第7页共12页练习:3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.四.自主检测一.选择题1.(08上海)组合数Crn(n>r≥1,n、r∈Z)恒等于()A.r+1n+1Cr-1n-1B.(n+1)(r+1)Cr-1n-1C.nrCr-1n-1D.nrCr-1n-12.(09全国卷Ⅱ)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有()A.6种B.12种C.30种D.36种3.(09辽宁卷)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()(A)70种(B)80种(C)100种(D)140种二、填空题4.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有种.5.平面内有四个点,平面内有五个点,从这九个点中任取三个,最多可确定个平面,任取四点,最多可确定个四面体.(用数字作答)6.(06陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种.三、解答题7.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?第8页共12页8.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.9.已知平面∥,在内有4个点,在内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?10.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?第9页共12页第三课二项式定理一.知识梳理1.(a+b)n=(n∈N),这个公式称做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数叫做二项式系数.式中的叫做二项展开式的通项,用Tr+1表示,即通项公式Tr+1=是表示展开式的第r+1项.2.二项式定理中,二项式系数的性质有:①在二项式展开式中,与首末两项“等距离”的两项二项式系数相等,即:01122,,,,.nnnrnrnnnnnnnnCCCCCCCC②如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,即当n是偶数时,n+1是奇数,展开式共有n+1项,中间一项,即:第项的二项式系数最大,为;当n是奇数时,n+1是偶数,展开式共有n+1项,中间两项,即第项及每项,它们的二项式系数最大,为③二项式系数的和等于—————————,即————————————④二项展开式中,偶数项系数和等于奇数项的系数和=即⑤展开式中相邻两项的二项式系数的比是:1::1kknnCCnkk3.二项式定理主要有以下应用①近似计算②解决有关整除或求余数问题③用二项式定理证明一些特殊的不等式和推导组合公式(其做法称为“赋值法”)注意二项式定理只能解决一些与自然数有关的问题④杨辉三角形二,基础自测1.在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n=.2.在(a2-2a31)n的展开式中,则下列说法错误的有个.①没有常数项②当且仅当n=2时,展开式中有常数项③当且仅当n=5时,展开式中有常数项④当n=5k(k∈N*)时,展开式中有常数项3.若多项式0Cn(x+1)n-C1n(x+1)n-1+…+(-1)rCrn(x+1)n-r+…+(-1)nCnn=a0xn+a1xn-1+…+an-1x+an,则a0+a1+…+an-1+an=.4.(09浙江卷理)在二项式251()xx的展开式中,含4x的项的系数是。.5.(09陕西卷文)若20092009012009(12)()xaaxaxxR,则20091222009222aaa的值为。第

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功