电力电子技术第五版课件第2章电力电子器件概述.

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1-1第2章电力电子器件2.1电力电子器件概述2.2不可控器件——电力二极管2.3半控型器件——晶闸管2.4典型全控型器件2.5其他新型电力电子器件2.6功率集成电路与集成电力电子模块1-2电子技术的基础———电子器件:晶体管和集成电路电力电子电路的基础———电力电子器件本章主要内容:概述电力电子器件的概念、特点和分类等问题。介绍常用电力电子器件的工作原理、基本特性、主要参数以及选择和使用中应注意问题。第2章电力电子器件·引言1-31)概念:电力电子器件(PowerElectronicDevice)——可直接用于主电路中,实现电能的变换或控制的电子器件。主电路(MainPowerCircuit)——电气设备或电力系统中,直接承担电能的变换或控制任务的电路。2)分类:电真空器件(汞弧整流器、闸流管)半导体器件(采用的主要材料仍然是硅)2.2.1电力电子器件的概念和特征电力电子器件1-4能处理电功率的能力,一般远大于处理信息的电子器件。电力电子器件一般都工作在开关状态。电力电子器件往往需要由信息电子电路来控制。电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。3)同处理信息的电子器件相比的特征:1-5通态损耗是器件功率损耗的主要成因。器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素。主要损耗通态损耗断态损耗开关损耗关断损耗开通损耗电力电子器件的损耗1-6电力电子系统:由控制电路、驱动电路、保护电路和以电力电子器件为核心的主电路组成。图1-1电力电子器件在实际应用中的系统组成控制电路检测电路驱动电路RL主电路V1V2保护电路在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行电气隔离控制电路1-7半控型器件(Thyristor)——通过控制信号可以控制其导通而不能控制其关断。全控型器件(IGBT,MOSFET)——通过控制信号既可控制其导通又可控制其关断,又称自关断器件。不可控器件(PowerDiode)——不能用控制信号来控制其通断,因此也就不需要驱动电路。2.1.3电力电子器件的分类按照器件能够被控制的程度,分为以下三类:1-8电流驱动型——通过从器件的控制端注入或者抽出电流来实现导通或者关断的控制。电压驱动型——仅通过在器件的控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。按照驱动电路信号的性质,分为两类:1-9本章内容:介绍各种器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题。集中讲述电力电子器件的驱动、保护和串、并联使用这三个问题。学习要点:最重要的是掌握其基本特性。掌握电力电子器件的型号命名法,以及其参数和特性曲线的使用方法。可能会对主电路的其它电路元件有特殊的要求。2.1.4本章学习内容与学习要点1-10PowerDiode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用。肖特基二极管:多用于正向压降较低(一般是0.3V)的低压输出电路。快恢复二极管:多用于带有可控开关且反向恢复时间较短的高频电路中。2.2不可控器件—电力二极管整流二极管及模块•二极管处于通态时,开通速度很快,可当作理想开关反向截至区iDUD0iDUF(I)UratedAK+UD-iD1-12基本结构和工作原理与信息电子电路中的二极管一样。由一个面积较大的PN结和两端引线封装组成的。从外形上看,主要有螺栓型和平板型两种封装。图2-2电力二极管的外形、结构和电气图形符号a)外形b)结构c)电气图形符号AKAKa)IKAPNJb)c)AK1-13PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ,又称为微分电容。结电容按其产生机制和作用的差别分为势垒电容CB和扩散电容CD。电容影响PN结的工作频率,尤其是高速的开关状态。PN结的电容效应:1-14主要指其伏安特性门槛电压UTO,正向电流IF开始明显增加所对应的电压。与正向电流IF对应的电力二极管两端的电压即为其正向电压降UF。承受反向电压时,只有微小而数值恒定的反向漏电流。图1-4电力二极管的伏安特性2.2.2电力二极管的基本特性1)静态特性IOIFUTOUFU1-152)动态特性—电力二极管在偏值状态发生改变时的过渡过程—结电容的存在a)FUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdt图1-5电力二极管的动态过程波形a)正向偏置转换为反向偏置延迟时间:td=t1-t0,电流下降时间:tf=t2-t1反向恢复时间:trr=td+tf恢复特性的软度:下降时间与延迟时间的比值tf/td,或称恢复系数,用Sr表示。1-16正向压降先出现一个过冲UFP,经过一段时间才趋于接近稳态压降的某个值(如2V)。正向恢复时间tfr。电流上升率越大,UFP越高。UFPuiiFuFtfrt02V图1-5(b)开通过程1.2.2电力二极管的基本特性开通过程:关断过程须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。IFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdt图1-5(b)关断过程1-172.2.3电力二极管的主要参数额定电流——在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。IF(AV)是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。换算关系:正弦半波电流的有效值I和平均值IF(AV)之比:1)正向平均电流IF(AV)()1.57FAVII1-18在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。3)反向重复峰值电压URRM对电力二极管所能重复施加的反向最高峰值电压。使用时,应当留有两倍的裕量。4)反向恢复时间trrtrr=td+tf2.2.3电力二极管的主要参数2)正向压降UFIFUFtFt0trrtdtft1t2tURURPIRPdiFdtdiRdtIOIFUTOUFU1-19结温是指管芯PN结的平均温度,用TJ表示。TJM是指在PN结不致损坏的前提下所能承受的最高平均温度。TJM通常在125~175C范围之内。6)浪涌电流IFSM指电力二极管所能承受最大的连续一个或几个工频周期的过电流。5)最高工作结温TJM1-201)普通二极管(GeneralPurposeDiode)又称整流二极管(RectifierDiode)多用于开关频率不高(1kHz以下)的整流电路其反向恢复时间较长正向电流定额和反向电压定额可以达到很高DATASHEET1按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同介绍。2.2.4电力二极管的主要类型1-21简称快速二极管快恢复外延二极管(FastRecoveryEpitaxialDiodes——FRED),其trr更短(可低于50ns),正向压降UF也很低(0.9V左右),但其反向耐压多在1200V以下。从性能上可分为快速恢复和超快速恢复两个等级。前者trr为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。DATASHEET1232)快恢复二极管(FastRecoveryDiode——FRD)1-22肖特基二极管的优点反向恢复时间很短(10~40ns)。正向恢复过程中也不会有明显的电压过冲。反向耐压较低时其正向压降明显低于快恢复二极管。效率高,其开关损耗和正向导通损耗都比快速二极管还小。肖特基二极管的弱点反向耐压提高时正向压降会提高,多用于200V以下。反向稳态损耗不能忽略,必须严格地限制其工作温度。3.肖特基二极管(DATASHEET1)以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(SchottkyBarrierDiode——SBD)。1-232.3半控器件—晶闸管2.3.1晶闸管的结构与工作原理2.3.2晶闸管的基本特性2.3.3晶闸管的主要参数2.3.4晶闸管的派生器件1-242.3半控器件—晶闸管·引言1956年美国贝尔实验室发明了晶闸管。1957年美国通用电气公司开发出第一只晶闸管产品。1958年商业化。开辟了电力电子技术迅速发展和广泛应用的崭新时代。20世纪80年代以来,开始被全控型器件取代。能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位。晶闸管(Thyristor):晶体闸流管,可控硅整流器(SiliconControlledRectifier——SCR)1-25图1-6晶闸管的外形、结构和电气图形符号a)外形b)结构c)电气图形符号2.3.1晶闸管的结构与工作原理外形有螺栓型和平板型两种封装。有三个连接端。螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。平板型晶闸管可由两个散热器将其夹在中间。AAGGKKb)c)a)AGKKGAP1N1P2N2J1J2J31-262.3.1晶闸管的结构与工作原理常用晶闸管的结构螺栓型晶闸管晶闸管模块平板型晶闸管外形及结构1-27式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V2的共基极漏电流。由以上式可得:图1-7晶闸管的双晶体管模型及其工作原理a)双晶体管模型b)工作原理晶闸管导通的原理可用晶体管模型解释,由图得:111CBOAcIII222CBOKcIIIGAKIII21ccAIII(1-2)(1-1)(1-3)(1-4))(121CBO2CBO1G2AIIII(1-5)1-28阻断状态:IG=0,1+2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和。开通状态:注入触发电流使晶体管的发射极电流增大以致1+2趋近于1,流过晶闸管的电流IA,将趋近于无穷大,实现饱和导通。IA实际上由于外电路负载的限制,会维持有限值。在低发射极电流下是很小的,而当发射极电流建立起来之后,会迅速增大(形成强烈正反馈所致)。1-29阳极电压升高至相当高的数值造成雪崩效应阳极电压上升率du/dt过高结温较高光触发光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中,称为光控晶闸管(LTT)只有门极触发是最精确、迅速而可靠的控制手段。其他几种可能导通的情况:1-302.3.2晶闸管的基本特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。DATASHEET2晶闸管正常工作时的特性总结如下:1-31(1)正向特性IG=0时,器件两端施加正向电压,只有很小的正向漏电流,为正向阻断状态。正向电压超过正向转折电压Ubo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低。晶闸管本身的压降很小,在1V左右。正向导通雪崩击穿O+UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURSM1)静态特性图1-8晶闸管的伏安特性IG2IG1IG1-32反向特性类似二极管的反向特性。反向阻断状态时,只有极小的反相漏电流流过。当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。图1-8晶闸管的伏安特性IG2IG1IG正向导通雪崩击穿O+UA-UA-IAIAIHIG2IG1IG=0UboUDSMUDRMURRMURSM(2)反向特性1-331)开通过程延迟时间td(0.5~1.5s)上升时间tr(0.5~3s)开通时间tgt以上两者之和,tgt=td+tr(1-6)100%90%10%uAKttO0tdtrtrrtgrURRMIRMiA2)关断过程反向阻断恢复时间trr正向阻断恢复时间tgr关断时间tq以上两者之和tq=trr+tgr(1-7)普通晶闸管的关断时间约几百微秒2)动态特性图1-9晶闸管的开通和关断过程波形1-342.3.3晶闸管的主要参数断态重复峰值电压UDRM——在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。反向重复峰值电压URRM——在门极断

1 / 116
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功