电力系统分析课程设计牛顿拉夫逊潮流计算

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

武汉理工大学《电力系统分析》课程设计说明书1电力系统编程潮流计算1设计任务及初步分析1.1设计任务条件:节点数:3支路数:3计算精度:0.00010支路1:0.0300+j0.09001┠—————□—————┨2支路2:0.0200+j0.09002┠—————□—————┨3支路3:0.0300+j0.09003┠—————□—————┨1节点1:PQ节点,S(1)=-0.5000-j0.2000节点2:PQ节点,S(2)=-0.6000-j0.2500节点3:平衡节点,U(3)=1.0000∠0.0000要求:编写程序计算潮流1.2初步分析潮流计算在数学上可归结为求解非线性方程组,其数学模型简写如下:0)(0)(0)(21212211nnnnxxxfxxxfxxxf,,,,,,,,,武汉理工大学《电力系统分析》课程设计说明书22牛顿-拉夫逊法简介2.1概述牛顿-拉夫逊法是目前求解非线性方程最好的一种方法。这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿-拉夫逊法的核心。牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数——雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动即在此邻域内。2.2一般概念对于非线性代数方程组0xf即0,,,21nixxxfni,2,1(2-1)在待求量x的某一个初始计算值0x附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组0000xxfxf(2-2)上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量0100xfxfx(2-3)将0x和0x相加,得到变量的第一次改进值1x。接着再从1x出发,重复上述计算过程。因此从一定的初值0x出发,应用牛顿法求解的迭代格式为kkkxfxxf(2-4)kkkxxx1(2-5)上两式中:xf是函数xf对于变量x的一阶偏导数矩阵,即雅可比矩阵J;武汉理工大学《电力系统分析》课程设计说明书3k为迭代次数。由式(2-4)和式子(2-5)可见,牛顿法的核心便是反复形成求解修正方程式。牛顿法当初始估计值0x和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性。2.3潮流计算的修正方程运用牛顿-拉夫逊法计算潮流分布时,首先要找出描述电力系统的非线性方程。这里仍从节点电压方程入手,设电力系统导纳矩阵已知,则系统中某节点(i节点)电压方程为njiijijUSUY1从而得njjijiiUYUS1进而有01jnjijiiiUYUjQP(2-6)式(2-6)中,左边第一项为给定的节点注入功率,第二项为由节点电压求得的节点注入功率。他们二者之差就是节点功率的不平衡量。现在有待解决的问题就是各节点功率的不平衡量都趋近于零时,各节点电压应具有的价值。由此可见,如将式(2-6)作为牛顿-拉夫逊中的非线性函数0XF,其中节点电压就相当于变量X。建立了这种对应关系,就可列出修正方程式,并迭代求解。但由于节点电压可有两种表示方式——以直角做表或者极坐标表示,因而列出的迭代方程相应地也有两种,下面分别讨论。2.4直角坐标表示的修正方程节点电压以直角坐标表示时,令iiijfeU、jjjjfeU,且将导纳矩阵中元素表示为ijijijjBGY,则式(2-7)改变为01njjjijijiiiijfejBGjfejQP(2-7)再将实部和虚部分开,可得0011njjijjijijijjijiinjjijjijijijjijiieBfGefBeGfQeBfGffBeGeP(2-8)武汉理工大学《电力系统分析》课程设计说明书4这就是直角坐标下的功率方程。可见,一个节点列出了有功和无功两个方程。对于PQ节点(1,,21mi,),给定量为节点注入功率,记为iP、iQ,则由式(2-8)可得功率的不平衡量,作为非线性方程njjijjijijijjijiiinjjijjijijijjijiiieBfGefBeGfQQeBfGffBeGePP11(2-9)式中iP、iQ——分别表示第i节点的有功功率的不平衡量和无功功率的不平衡量。对于PV节点(nmmi,,2,1),给定量为节点注入有功功率及电压数值,记为iP、iU,因此,可以利用有功功率的不平衡量和电压的不平衡量表示出非线性方程,即有22221iiiinjjijjijijijjijiiifeUUeBfGffBeGePP(2-10)式中iU为电压的不平衡量。对于平衡节点(mi),因为电压数值及相位角给定,所以SsSjfeU也确定,不需要参加迭代求节点电压。因此,对于n个节点的系统只能列出12n个方程,其中有功功率方程1n个,无功功率方程1m个,电压方程mn个。将式(2-9)、式(2-10)非线性方程联立,称为n个节点系统的非线性方程组,且按泰勒级数在0if、0ie(mini,,,2,1)展开,并略去高次项,得到以矩阵形式表示的修正方程如下。武汉理工大学《电力系统分析》课程设计说明书5nnppnnnnnpnpnnnnnnnnnpnpnnnnpnpnpppppppppnpnppppppppnnppnnppnnppnnppnnppefefefefSRSRSRSRNHNHNHNHSRSRSRSRNHNHNHNHLJLJLJLJNHNHNHNHLJLJLJLJNHNHNHNHUPUPQPQP22112211221122112211222222222121222222222121111112121111111112121111222211(2-11)上式中雅可比矩阵的各个元素则分别为jiijfPHjiijePNjiijfQJjiijeQLjiijfUR2jiijeUS2将(2-11)写成缩写形式efefSRLJNHUQPJ2(2-12)对雅可比矩阵各元素可做如下讨论:当ij时,对于特定的j,只有该特定点的if和ie是变量,于是雅可比矩阵中各非对角元素表示为iijiijjiijfGeBfPHiijiijjiijfBeGePNiijiijjiijeGfBfQJiijiijjiijeBfGeQL02jiijfUR02jiijeUS当ij时,雅可比矩阵中各对角元素的表示式为武汉理工大学《电力系统分析》课程设计说明书6iiiiiinjjijjijjiijeBfGeBfGfPH1iiiiiinjjijjijjiijfBeGfBeGePN1fBeGfBeGfQJiiiiinjjijjijjiij1iiiiiinjjijjijjiijeBfGeBfGeQL1ijiijffUR22ijiijeeUS22由上述表达式可知,直角坐标的雅可比矩阵有以下特点:1)雅可比矩阵是12n阶方阵,由于jiijHH、jiijNN等等,所以它是一个不对称的方阵。2)雅可比矩阵中诸元素是节点电压的函数,在迭代过程中随电压的变化而不断地改变。3)雅可比矩阵的非对角元素与节点导纳矩阵BY中对应的非对角元素有关,当BY中的ijY为零时,雅可比矩阵中相应的ijH、ijN、ijJ、ijL也都为零,因此,雅可比矩阵也是一个稀疏矩阵。武汉理工大学《电力系统分析》课程设计说明书73程序设计3.1程序流程图输入原始数据形成节点导纳矩阵设电压初值e(0)、f(0)设迭代次数k=0计算误差向量∆P(k)、∆Q(k)、∆U2(k)收敛否求雅可比矩阵元素解修正方程,求解∆e(k)、∆f(k)修正节点电压e(k+1)=e(k)-∆e(k)f(k+1)=f(k)-∆f(k)K=K+1KKmax不收敛停机求PU节点无功功率,求平衡节点功率求支路功率分布和损耗停机是否图3-1程序流程图3.2源程序n=3n1=3isb=3pr=0.0001武汉理工大学《电力系统分析》课程设计说明书8B1=[120.03+0.09i010;130.03+0.09i010;230.02+0.09i010]B2=[0-0.5-0.2i1002;0-0.6-0.25i1002;001101]X=[10;20;30]%X=input('节点号和对地参数:X=');Y=zeros(n);Times=1;%置迭代次数为初始值%创建节点导纳矩阵fori=1:n1ifB1(i,6)==0%不含变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4);else%含有变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5));Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3);Y(q,q)=Y(q,q)+1/(B1(i,5)^2*B1(i,3));endendYOrgS=zeros(2*n-2,1);DetaS=zeros(2*n-2,1);%将OrgS、DetaS初始化%创建OrgS,用于存储初始功率参数h=0;j=0;fori=1:n%对PQ节点的处理ifi~=isb&B2(i,6)==2h=h+1;forj=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend武汉理工大学《电力系统分析》课程设计说明书9fori=1:n%对PV节点的处理,注意这时不可再将h初始化为0ifi~=isb&B2(i,6)==3h=h+1;forj=1:nOrgS(2*h-1,1)=O

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功