翰林教育初二数学陶老师地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)二元一次方程组知识梳理:一、常见的一些等量关系(一)1.和差倍分问题:增长量=原有量×增长率较大量=较小量+多余量,总量=倍数×倍量.2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100%利润利润率进价.二、实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;[来源:学科网](3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题例1.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=()100%()男女生优分人数男女生测试人数,全校优分率=100%全校优分人数全校测试人数)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最翰林教育初二数学陶老师地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?类型二、配套问题例2.某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?举一反三:【变式】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?类型三、工程问题例3.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成.现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前1天完成任务.问:甲、乙两队合做了多少天?丙队加入后又做了多少天?类型四、利润问题例4.甲乙两件服装的成本为500元,商店老板为获取利润,决定将甲种服装按50%的利润定价,乙种服装按40%的利润定价.实际出售时,两种服装均按九折出售,这样商店共获翰林教育初二数学陶老师地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)利157元.求甲乙两件服装的成本各是多少元?举一反三:【变式】儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?三、常见的一些等量关系(二)1、行程问题速度×时间=路程.顺水速度=静水速度+水流速度.逆水速度=静水速度水流速度.2、存贷款问题利息=本金×利率×期数.本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数).年利率=月利率×12.月利率=年利率×121.3、数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.4、方案问题在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.要点诠释:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.【典型例题】类型一、行程问题例1.某人要在规定的时间内由甲地赶往乙地,如果他以每小时50千米的速度行驶,就会迟到24分钟,如果他以每小时70千米的速度行驶,则可提前24分钟到达乙地,求甲乙两地翰林教育初二数学陶老师地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)间的距离.举一反三:【变式】已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度.类型二、存贷款问题例2.张叔叔10万元买一辆货车跑运输,年利率为5.49%,计划两年还清贷款和利息.他用货车载货平均每月可赚运输费0.8万元,其中开支有两项:油费是运费收入的10%,修理费、养路费和交税是运费收入的20%,其余才是利润.请你算一算,张叔叔跑2年的利润能否还清贷款和利息?举一反三:【变式】在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿().A.20B.25C.30D.35类型三、数字问题例3.小明和小亮做游戏,小明在一个加数的后面多写了一个0,得到的和为242;小亮在另一个加数后面多写了一个0,得到的和为341.原来的两个数分别为多少?举一反三:【变式】一个两位数的十位上的数字与个位上的数字之和是这个两位数的12,用方程表示这一个数量关系是.翰林教育初二数学陶老师地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)类型四、方案选择问题例4.一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20000元,按“技术员工个人奖金”A(元)和“辅助员工个人奖金”B(元)两种标准发放,其中A≥B≥800,并且A,B都是100的整数倍.(注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.)(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.举一反三:【变式】联想集团某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型电脑每台6000元,B型电脑每台4000元,C型电脑每台2500元,某市一中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑36台,请你设计出几种不同的购买方案供该校选择,并说明理由.