1/17传热学HeatTransfer§4-3一维非稳态导热问题的数值求解在非稳态导热问题中,不但需要对空间区域进行离散,还需要对时间变量进行离散以一维非稳态导热问题为例,重点介绍对非稳态项的离散方法,以及不同离散方法对计算带来的影响等。Φztzytyxtxtc)()()(2/17传热学HeatTransfer一、物理问题2δh,t∞h,t∞厚度2的无限大平壁,、a为已知常数,=0时温度为t0,突然将其放置于温度为t并保持不变的流体中,两侧表面与介质之间的表面传热系数为h。3/17传热学HeatTransfer二、数学描写分析物理问题可知:中心截面为对称面22xtat,00tt0,0xtx,-()xxtxhtt4/17传热学HeatTransfer三、时空坐标的离散0xnin,in-1,in+1,in,i+1n,i-1•把【0,】分成(N-1)等分,有N个节点,网格步长为x;•把要计算的时间分成(I-1)等分,有I个时层,时间步长为。int任一时刻任一几何位置上的温度可以表示为:5/17传热学HeatTransfer四、离散方程的建立1.扩散项的离散2.非稳态项的离散......!212,22,1inininintttt......!212,22,1inininintttt6/17传热学HeatTransfer......!212,22,1ininininttttinininttt1,①向前差分(forwarddifference)7/17传热学HeatTransfer......!212,22,1inininintttt1,inininttt②向后差分(backwarddifference)8/17传热学HeatTransfer......!212,22,1inininintttt......!212,22,1inininintttt211,2inininttt③中心差分(centraldifference)9/17传热学HeatTransfer3.内节点离散方程implicitxtttaexplicitxtttattinininininininin211111211122111121221ininininttxattxaininininttxatxat112212110/17传热学HeatTransfer①左端绝热4.边界点离散方程iitt21•更新边界温度值iitt21•把边界点看成内节点11/17传热学HeatTransfer②右端边界节点112222122iiiNNNfahahttttxcxxcxiNiNiNfiNiNttxctthxtt11121112/17传热学HeatTransfer5.显式代数方程组1,......,3,22111221NnttxatxatininininNnttn......,,3,2,100iitt21112222122iiiNNNfahahttttxcxxcx13/17传热学HeatTransfer1,......,3,221111NnttFotFotininininNnttn......,,3,2,100iitt21fiNiNiNtBiFotFotBiFoFot222211114/17传热学HeatTransfer五、稳定性分析(stability)1,......,3,221111NnttFotFotininininfiNiNiNtBiFotFotBiFoFot22221111.显式格式的数值稳定性系数必须反映“正”影响!!!15/17传热学HeatTransfer021Fo0221BiFoFo21FoBiFo121•I&IIBC时只考虑对内点的限制;•IIIBC时必须考虑对边界点的限制。16/17传热学HeatTransfer2.隐式格式的数值稳定性1111121ininininttFottFofiNiNiNtBiFotFottBiFoFo22221111•绝对稳定!!!•计算复杂,工作量大!17/17传热学HeatTransfer本章作业4-6、4-9、4-10、4-22热平衡法