人教版八年级期中复习资料--全等三角形-轴对称证明题经典练习(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1如图,点D、E分别在等边三角形ABC的边BC、AC上,且BD=CE,连接AD、BE相交于点P,则∠APE的度数是多少?2如图,已知△ABC和△BDE都是等边三角形,求证:AE=CD。3如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试说明AB=CB的理由4沿矩形ABCD的对角线BD翻折△A'BD,A'D交BC于F,如图所示,△BDF是否是等腰三角形?请说明理由5如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,求证:(1)BD平分∠ABC;(2)△BCD为等腰三角形。6如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H。试猜测线段AE和BD的数量和位置关系,并说明理由。7(1)如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;(2)如图,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.8如图1,在△ABC中,AB=AC,AB的垂直平分线交A于N,交BC的延长线于M,∠A=40°,求∠NMB的大小。(1)如图1,在△ABC中,AB=AC,AB的垂直平分线交A于N,交BC的延长线于M,∠A=40°,求∠NMB的大小。(2)如果将(1)中的∠A的度数改为70°(如图2),其余条件不变,再求∠NMB的大小(3)你发现有什么样的规律性?试证明(4)将(1)中的∠A改为钝角,对这个问题规律性的认识,是否需要加以修改?9点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB.(2)求证:△CEF为等边三角形.10已知如图,在四边形ABCD中AB=BC=CD=DA.E、F分别是BC、CD上的点,且CE=CF.①求证△ABE全等于△ADF.②过点C作CG∥EA交AF于H,交AD于G.若∠BAE=25°,∠BCD=130°,求∠AHC的度数已知如图,在四边形ABCD中AB=BC=CD=DA.E、F分别是BC、CD上的点,且CE=CF.①求证△ABE全等于△ADF.②过点C作CG∥EA交AF于H,交AD于G.若∠BAE=25°,∠BCD=130°,求∠AHC的度数11已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.12如图,在等腰直角三角形AOB中,∠AOB=90°,在等腰直角三角形EOF中,∠EOF=90°,连接A,E,连接B,F,求:(1)AE=BF;(2)AE⊥BF.13如图,△ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点,(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论。14(1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为。(2)观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。15如图,在△ABC中,AB=AC,∠BAC=100°,MP、NO分别垂直平分AB、AC,求∠1,∠2的度数.试题分析:(1)先根据矩形的性质结合三角形的内角和定理求得∠AEB的度数,再根据折叠的性质求得∠DEF的度数,然后根据平行线的性质求得∠EFC的度数,即可得到结果;(2)设AD与EF交于点G.由折叠的性质可得AD平分∠BAC,所以∠BAD=∠CAD.∠AGE=∠DGE=90°,即得∠AEF=∠AFE,从而可以证得结论;(3)过N作NH⊥AD于H,设,根据折叠的性质及勾股定理可证得△MPF为等边三角形,则∠MFE=30°,∠MFN=60°,又MN=MF=,则△MNF为等边三角形,即可求得结果;(1)因为∠ABE=20°,所以∠AEB=70°由折叠知,∠DEF=55°所以=∠EFC=125°;(2)同意.设AD与EF交于点G.由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.由折叠知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF为等腰三角形.(3)过N作NH⊥AD于H设由折叠知,①②∴△MPF为等边三角形∴∠MFE=30°∴∠MFN=60°,又∵MN=MF=∴△MNF为等边三角形∴∠MNF=60°.考点:折叠问题的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功