热电联产摘要:首先!对热电联产机组的特性进行了分析!建立了考虑背压式和抽凝式热电联产机组以及并网风电的滚动调度模型然后!针对热电联产机组的特性!基于拉格朗日对偶松弛算法框架!提出了考虑风电以及其他各类机组的联合优化滚动调度算法一方面提出了主问题的迭代步长自适应修正方法以提高算法收敛速度!子问题则采用一种高效的逆推回代动态规划方法进行求解另一方面!针对抽凝式热电联产机组的热电耦合约束难题!将其分解为供热出力优化及有功出力优化个子问题!提出了个子问题的交替迭代优化算法前言:热电联产机组是指在供热期既生产电能又同时抽取部分蒸汽抽气式或利用做过功的蒸汽背压式给用户供热的发电机组,这种生产方式可使热电联产发电机组的热效率由凝汽式发电状态下大幅提高因此热电联产机组得到了大规模推广以吉林系统为例系统中绝大部分大容量高效率的火电机组目前都具备热电联产功能,在冬季采暖期居民供热负荷较重全网共有台机组具备热电联产功能总装机容量占火电装机容量的占系统总装机容量的在冬季采暖期热电联产机组采用+以热定电,的原则制定运行计划导致调峰能力下降造成了较大的弃风损失,因此合理的热电联产机组运行计划对系统的风电消纳及供热安全具有重要影响。基本内容(1)具体要求:热电联产它要求将热电站同有关工厂和城镇住宅集中布局在一定地段内,以取得最大的能源利用经济效益。西方和东欧国家发展热电联产已达较高水平,热电厂装机容量占电力总装机容量的30%,用于工业生产和分区集中供暖各占一半。造纸、钢铁和化学(包括石油化学)工业是热电联产的主要用户,它们不仅是消耗电热的大用户,而且其生产过程中所排出的废料和废气(如高炉气)可作为热电联产装置的燃料。城市工业区及人口居住密集区也是发展热电联产的主要对象,但要注意对当地热负荷进行分析,一般热化系数不得低于0.5(工业热负荷年利用小时数在3500小时以上,居民冬季采暖不小于3个月)。热电厂的供热距离通常不超过5~8公里。对热电联产的燃料质量(主要是含硫、磷量)有较高要求,同时厂址要选在城市盛行风的下风向,避免对城市环境的污染。当热电联产时蒸汽过剩时,可以将空调、生活用水,用吸收式空调来解决问题。锅炉产生的蒸汽在背压汽轮机或抽汽汽轮机发电,其排汽或抽汽,除满足各种热负荷外,还可做吸收式制冷机的工作蒸汽,生产6~8℃冷水用于空调或工艺冷却。(2)主要要求:(1)蒸汽不在降压或经减温减压后供热,而是先发电,然后用抽汽或排汽满足供热、制冷的需要,可提高能源利用率;(2)增大背压机负荷率,增加机组发电,减少冷凝损失,降低煤耗;(3)保证生产工艺,改善生活质量,减少从业人员,提高劳动生产率;代替数量大、型式多的分散空调,改善环境景观,避免“热岛”现象(3)工作原理溴化锂吸收式制冷机的工作原理冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。溴化锂的性质利用原理溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有蒸馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的下降而降低的。溶液的浓度不宜超过66%,否则运行中,因温度降低容易将溴化锂结晶,破坏正常循环的运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。总结随着我国经济建设的飞跃,电力工业有了飞速的发展,全国装机容量和发电量居世界第二。据前瞻网《中国热电联产行业市场前瞻与投资战略规划分析报告》调查数据显示,2000年全国装机容量31932万kW,年发电量13685亿kWh;2005年预计4.3亿kW,27000亿kWh;安全、经济指标逐年提高,全国平均供电标煤耗6MW及以上机组电厂;1990年429g/kWh,1998年404g/kWh,1999年399g/kWh,2000年392g/kWh,2001年降至385g/kWh,2002年为381g/kWh,去年为377g/kWh。大型电站热电联产化将是未来大型火电站发展的一种趋势。大型电站热电联产化在保持蒸汽与发电的高效与大容量的基础上,能提供满足工业锅炉负荷的需求,取代工业锅炉,并可以保持热力供应的高效性。大型热电联产电站产生的蒸汽在发电后,还可满足各种热负荷,甚至还可作为吸收式制冷机的工作蒸汽,生产6~8℃冷水用于空调或工艺冷却。西方国家发展热电联产已达较高水平,其热负荷的用途已经扩张到冷热利用以及海水淡化等领域,大大扩展了热电联产的热利用范围。统计来看,西方国家热电厂装机容量占电力总装机容量的30%,用途大约为工业生产和分区集中供暖各占一半。在工业生产中,造纸、钢铁和化学工业都是热电联产的主要用户。随着热电联产行业竞争的不断加剧,国内优秀的热电联产生产企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。正因为如此,一大批国内优秀的热电联产品牌迅速崛起,逐渐成为热电联产行业中的翘楚!