物理学理论的三次重大突破

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

物理学理论的三次重大突破近300年物理学经历了三次重大突破:1、是牛顿力学的建立和热力学的发展;2、麦克斯韦创立了电磁理论;3、相对论、量子力学的创立.定义牛顿力学以牛顿运动定律和万有引力定律(见万有引力)为基础,研究速度远小于光速的宏观物体的运动规律。狭义相对论研究速度能与光速比拟的物体的运动,量子力学研究电子、质子等微观粒子的运动。从研究的范畴来说,牛顿力学同相对论和量子力学相区别,牛顿力学是经典力学的组成部分。继I.牛顿以后,J.-L.拉格朗日和W.R.哈密顿相继发展了新的力学体系。牛顿力学所着重的量如力、动量等都具有矢量性质,而且牛顿方程是用矢量形式表达的,故牛顿力学可称为矢量力学;拉格朗日体系和哈密顿体系所着重的量是系统的能,它具有标量的性质,可以通过力学的变分原理建立系统的动力学方程,故拉格朗日体系和哈密顿体系等可统称为分析力学。因此,从力学的研究方法和体系来说,牛顿力学同拉格朗日体系和哈密顿体系相区别;但从经典力学的基本原理来说,拉格朗日方程和哈密顿原理同牛顿定律是等价的。然而,哈密顿原理能应用于较广泛的物理现象。将拉格朗日体系和哈密顿体系(尤其是后者)应用于物理学和天体力学中广泛出现的保守系统,有极大的优点。例如,这两个体系的观点和方法对天体力学的摄动理论和经典统计力学的理论性研究有较大价值。牛顿力学由来牛顿力学(Newton'sMechanics)是以牛顿运动定律为基础,在17世纪以后发展起来的。直接以牛顿运动定律为出发点来研究质点系统的运动,这就是牛顿力学。艾萨克牛顿爵士试图使用惯性与力的概念描述所有物体的运动,所以他找寻出它们服从确定的守恒定律。在1687年,牛顿接着出版了他的自然哲学的数学原理论文。在这里牛顿开创了三个运动定律,到了今日还是描述力的方式。意义牛顿经典力学体系的建立开辟了科学发展的一个新天地、新时代。经典力学的广泛传播和运用对人们的生活和思想产生了重大影响,在一定程度上推动了人类社会的发展进步。但经典力学存在的固有缺点和局限性也在一定程度上阻碍了人类社会的进步,产生了消极作用。本文将以经典力学的建立背景为起点,进一步用辩证的方法分析经典力学在人类历史与现实中发挥的作用与产生的不良影响。17世纪的欧洲,经过许多科学家的努力,在天文学和力学方面积累了丰富资料的基础上,英国科学家牛顿实现了天上力学和地上力学的综合,形成了统一的力学体系——经典力学。经典力学体系的建立,是人类认识自然及历史的第一次大飞跃和理论的大综合,它开辟了一个新的时代,并对科学发展的进程以及人类生产生活和思维方式产生极其深刻的影响。牛顿经典力学的建立是科学形态上的重要变革,标志着近代理论自然科学的诞生,并成为其他各门自然科学的典范。热力学是热学理论的一个方面。热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可行性和普遍性。热力学三定律是热力学的基本理论。热力学第一定律反映了能量守恒和转换时应该遵从的关系,它引进了系统的态函数——内能。热力学第一定律也可以表述为:第一类永动机是不可能造成的。热学中一个重要的基本现象是趋向平衡态,这是一个不可逆过程。例如使温度不同的两个物体接触,最后到达平衡态,两物体便有相同的温度。但其逆过程,即具有相同温度的两个物体,不会自行回到温度不同的状态。这说明,不可逆过程的初态和终态间,存在着某种物理性质上的差异,终态比初态具有某种优势。1854年克劳修斯引进一个函数来描述这两个状态的差别,1865年他给此函数定名为熵。1850年,克劳修斯在总结了这类现象后指出:不可能把热从低温物体传到高温物体而不引起其他变化,这就是热力学第二定律的克氏表述。几乎同时,开尔文以不同的方式表述了热力学第二定律的内容。用熵的概念来表述热力学第二定律就是:在封闭系统中,热现象宏观过程总是向着熵增加的方向进行,当熵到达最大值时,系统到达平衡态。第二定律的数学表述是对过程方向性的简明表述。1912年能斯脱提出一个关于低温现象的定律:用任何方法都不能使系统到达绝对零度。此定律称为热力学第三定律。牛顿力学的建立和热力学的发展,导致了蒸汽机的发明,使人类进入蒸汽动力时代,进入了第一次工业革命;19世纪,从法拉第发现电磁感应,导致了发电机的发明,使人类进入了电气时代.麦克斯韦电磁理论基础的电学和磁学的经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程预言:变化的电磁场以波的形式向空间传播。重大发明第二次工业革命以电器的广泛应用最为显著。19世纪六七十年代开始,出现了一系列的重大发明。[1]1866年,德国人西门子制成了发电机;到70年年代,实际可用的发电机问世。[1]电器开始用于代替机器,成为补充和取代以蒸汽机为动力的新能源。随后,电灯、电车、电影放映机相继问世,人类进入了“电气时代”。[1]科学技术应用于工业生产的另一项重大成就,是内燃机的创新和使用。19世纪七八十年代,以煤气和汽油为燃料的内燃机相继诞生,90年代柴油机创制成功。内燃机的发明解决了交通工具的发动机问题。80年代德国人卡尔·弗里特立奇·本茨等人成功地制造出由内燃机驱动的汽车,内燃汽车、远洋轮船、飞机等也得到了迅速发展。内燃机的发明,推动了石油开采业的发展和石油化工工业的生产。[1]1870年,全世界生产大约八十万吨石油,而1900年的年生产量猛增到了二千万吨石油。[1]科学技术的进步也带动了电讯事业的发展。19世纪70年代,美国人贝尔发明了电话,90年代意大利人可尼试验无线电报取得了成功,都为迅速传递信息提供了方便。世界各国的经济、政治和文化联系进一步加强。[4]相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发展了牛顿力学,推动物理学发展到一个新的高度。狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对论是吻合很好的,所以目前普遍认为相对论是正确的理论。量子力学是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论它与相对论一起构成现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等学科和许多近代技术中得到广泛应用。1第一次工业革命,主要标志是蒸汽机的广泛应用,这是牛顿力学和热力学发展的结果。2第二次工业革命,主要标志是电力的广泛应用和无线电通讯的实现,这是电磁现象的研究和经典电磁场理论的重大突破的结果。3第三次技术革命,产生了一系列高新技术,如核能源技术、激光技术、电子计算机技术等,这都离不开20世纪以相对论和量子力学为主要内容的近代物理的

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功