物理竞赛课件22电磁感应面面观

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

动生电动势与感生电动势♠BqvlBlvqBv-动生电动势+FEBEqlElq感生电动势BStt.BSEtl示例示例如图所示,一长直导线中通有电流I=10A,有一长l=0.2m的金属棒AB,以v=2m/s的速度平行于长直导线做匀速运动,若棒的近导线的一端与导线距离a=0.1m,求金属棒AB中的动生电动势.解:专题22-例1I直线电流磁场分布有02BIr距直线电流ri处元动生电动势v012iiiiIrrvr设棒中总动生电动势为ε,1021iirrnvI102limlim1nninnirrnvIri02nvIalea0ln2Ivala012iiiIrrvrn解:专题22-例2通电螺线圈内磁场分布有0BnI圆盘产生转动动生电动势20012BnIr电流表读数:2002BnIrIR由20202rBIRnrωIO202Rnr00Bn如图所示是单极发电机示意图,金属圆盘半径为r,可以无摩擦地在一个长直螺线圈中,绕一根沿螺线圈对称轴放置的导电杆转动,线圈导线的一端连接到圆盘的边缘,另一端连接到杆上,线圈的电阻为R,单位长度有n匝,它被恰当地放置而使它的对称轴和地球磁场矢量B0平行,若圆盘以角速度ω转动,那么流过图中电流表的电流为多少?AωB0规律试手B0Oa0nI0nI返回在磁感应强度为B,水平方向的均匀磁场内,有一个细金属丝环以速度做无滑动的滚动,如图所示.环上有长度为l的很小的缺口,磁场方向垂直于环面.求当角AOC为α时环上产生的感应电动势.解:开口的细金属丝环在滚动过程“切割”磁感线而产生动生电动势.如图:vvsinBlvAOC0tanln2BCIvdld解:无限长直线电流周围磁感应强度的分布规律为Ivd02BIr直角三角形线圈ABC的AB边在距直线电流d时的动生电动势为01tatan2ndBvlIvldlAC直角三角形线圈的BC边各段处在不同磁场,取第i段:有效切割长度:1taniirr1tanBCiiiBrrvn则10tan2iiBCirrIvrn02tanBCIvdled120tanln2IvdllddfB如图所示,在电流为I的无限长直导线外有与它共面的直角三角形线圈ABC,其中AB边与电流平行,AC边长l,∠BCA=θ,线圈以速度v向右做匀速运动,求当线圈与直线电流相距d时,线圈中的动生电动势.B如图所示,一根永久性圆磁棒,在它的磁极附近套上一环形线圈,摆动线圈,使线圈沿轴做简谐运动,振幅A=1mm(这比磁铁和线圈的尺寸小得多),频率f=1000Hz.于是,在线圈里产生感应电动势,其最大值εm=5V,如果线圈不动,线圈通以电流I=200mA,求磁场对线圈的作用力.解:设线圈所在处磁场辐向分量为Bx,线圈摆动时“切割”Bx而产生动生电动势,线圈简谐运动最大速度:此时有最大电动势:max2vfAmax2xfABLmax2xLBfA线圈通电时受所在处磁场辐向分量Bx安培力:xFBLImax2LIfALN30.2523.14100010N0.16返回一个“扭转”的环状带子(称为莫比乌斯带)是由长度为L,宽度为d的纸条制成.一根导线沿纸带的边缘了一圈,并连接到一个电压表上,如图所示.当把绕在纸带上的导线圈放入一个均匀的垂直于纸带环所在面的磁场中,且磁场随时间均匀变化,即,电压表记录的数据为多少?解1:专题22-例3磁场随时间均匀变化Bkt变化的磁场引起感生电场:22LSEkkLL电压表读数:2EL由4Lk22kL2解:由法拉弟电磁感应定律,每个线圈中的电动势为:2EL由202LkSk24Lk22kLBtkt解:一个长的螺线管包括了另一个同轴的螺线管,它的半径R是外面螺线管半径的一半,两螺线管单位长度具有相同的圈数,且初时都没有电流.在同一瞬时,电流开始在两个螺线管中线性地增长,任意时刻,通过里边螺线管的电流为外边螺线管中电流的两倍且方向相同,由于增长的电流,一个处于两个螺线管之间初始静止的带电粒子开始沿一条同心圆轨道运动,如图所示,求该圆轨道半径r.专题22-例4变化电流在螺线管上产生变化的匀强磁场,变化的磁场产生感生电场。带电粒子在磁场及感生电场中受洛伦兹力与电场力;在向心力与速度相适配的确定轨道做圆周运动.r10BnIrE①②202BnI粒子绕行一周时间设为ΔT,则200222rnInIrRETTr由动量定理,感生电场使静止粒子获得速度:rqETmv粒子运动的一个动力学方程为:21vqBvmr220022nIrRqTrTqnIr2rR规律2200222RnIRnIR200224222nIRBnIRR12B试手RBBSEeEFm222BRBREtRt由动量定理,感生电场使电子增加速度Δv为:eEtmv当电子速度为v时,有:20vevBmR0mvBeR0BmvteRt0BmeEteRm2BRRt02BB返回轨道所在处的磁场磁感应强度为轨道内磁场平均磁感应强度的一半!在半径为R的圆柱形体积内充满磁感应强度为B的均匀磁场.有一长为l的金属棒放在磁场中,如图所示,设磁场在增强,其变化率为k.⑴求棒中的感生电动势,并指出哪端电势高;⑵如棒的一半在磁场外,其结果又如何?解:回路中的感生电动势BBSt感O22122lklR感2244klRl棒一半在磁场外时2221222llkRR感1122222tantan44llRlRl其中22211222242tantan8244lRlRllkRlRl右端电势高一个很长的直螺线管半径为R,因线圈通过交流电而在线圈内引起均匀的交变磁场B=B0sinωt,求螺线管内、外感生电场E的分布规律.解:把螺线管理想化为无限长通电直螺线管,其磁场均匀且只分布在管内.由于磁场按正弦规律变化,必会引起感生电场.BO在管内,距轴心r处2..22BrBrEtrt其中00sinsinlimtttBtttB00cossin2lim2ttttBt0cosBt0cos2rBtE內在管外,距轴心r处22..22BRBREtrtr20cos2RBEtr外自感电动势♠NtILt自自感系数电感线圈面积单位长度匝数总匝数有无铁芯自感线圈中的磁场能♠产生自感电动势的过程是电源电流做功将电能转变成磁场能的过程!,,iItIin若某电源移送元电量为,Iitn元功为电流由0增至I做的总功为:1limnniIWitn自ILnt212mELI,Iitn自解:有一个N匝的螺旋状弹簧如图所示,线圈半径为R、弹簧自然长度为x0(x0R),劲度系数为k,当电流I0通过弹簧时,求弹簧的长度改变了多少?专题22-例5先计算螺线管的自感系数20nIRNNtt自由I20INnRt20LNnR达到稳定时,磁通量不变:220000ttNNIRIRxx00ttxIIx220ttNRLx由能量守恒:222000111222tttkxxLILI2222000020ttNRkxxIxxx20220020txRkxNIx解:⑴闭合开关稳定时RESRrLrUrERr这也是开关刚打开时电感的端电压!⑵开关打开过程,电源电流为0,通过电表的是自感电流电感上电流从原来的0LEIRr2qtr自2LItrt2LErRr⑶开关闭合过程,电源电流与自感电流叠加,通过电表的是自感电流电感上电流从原来的0LEIRr2qtr自2LItrt2LErRr如图所示电路,直流电源的电动势为E,内阻不计,两个电阻值为R,一个电阻值为r,电感的自感系数为L,直流电阻值为r.闭合开关S,待电路电流稳定后,再打开开关S(电流计G内阻不计)⑴打开开关时,电阻值为r的电阻两端电压为多少?⑵打开开关后有多少电量通过电流计?⑶闭合开关到电流稳定时,有多少电量通过电流计?电磁涡流制动器由一电阻为ρ、厚度为τ的金属圆盘为主要部件,如图所示.圆盘水平放置,能绕过中心O的竖直轴转动,在距中心O为r处,一边长为a的正方形区域内有垂直于圆盘平面的匀强磁场,磁感应强度为B,若ra,试写出圆盘所受的磁制动力矩与圆盘转动角速度之间的关系式.处在磁场中的小金属块电阻为:aRa由法拉弟电磁感应定律,小金属块中的感应电动势为:2BaEtt小金属块中产生的感应电流(涡流)为:2EBaIRt,aBarratIr磁制动力矩:MBIar解:222Bar释放后棒在重力与安培力共同作用下做加速度减小的加速运动,由于线圈自感及棒的切割运动,产生与电源电动势相反的感应电动势,使通过AB棒的电流逐渐减小,当感应电动势与电源电动势相等时,棒上无电流,棒加速度为g,此后感应电动势大于电源电动势,安培力与重力方向相反,当电流达到恒定,棒速度达到最大时,线圈自感电动势为零,通过电流mvlBEIRrmvlBEmglBRr又122.5mvm/s如图,在竖直面内两平行导轨相距l=1m,且与一纯电感线圈L、直流电源E(ε,r)、水平金属棒AB联为一闭合回路,开始时,金属棒静止,尔后无摩擦地自由下滑(不脱离轨道).设轨道足够长,其电阻可忽略,空间中磁场B的大小为0.4T,其方向垂直于轨道平面,已知电源电动势为ε=9V,内电阻r=0.5Ω,金属棒质量m=1kg,其电阻R=1.1Ω,线圈自感系数L=12H,试求金属棒下落可达到的最大速度.ELABl解:OBa解:空洞处视作变化率相同的两反向匀强磁场Ba、Bb叠加:aa1Er2kbb1Er2kabEEEAOraAEArbdBb12AEkd即两变化磁场在空洞中A处引起感生电场Ea、Eb:sin60ELab1rr2k空腔内为一匀强电场!34kdL一无限长圆柱,偏轴平行地挖出一个圆柱空间,两圆柱轴间距离,图所示为垂直于轴的截面.设两圆柱间存在均匀磁场,磁感应强度B随时间t线性增长,即B=kt.现在空腔中放一与OO′成60°角、长为L的金属杆AB,求杆中的感生电动势.感应电流电路计算♠0I0IR在半径为a的细长螺线管中,均匀磁场的磁感应强度随时间均匀增大,即B=B0+bt.一均匀导线弯成等腰梯形闭合回路ABCDA,上底长为a,下底长为2a,总电阻为R,放置如图所示:试求:⑴梯形各边上的感生电动势,及整个回路中的感生电动势;⑵B、C两点间的电势差.解:专题22-例6⑴梯形回路处于感生电场中0ABBOBACD0CD21sin602ADba234ba2123BCba26baABBCD2364ba⑵由全电路欧姆定律:由一段含源电路欧姆定律:2256BCRbaUI2310ba2364baIR两个同样的金属环半径为R,质量为m,放在均匀磁场中,磁感应强度为B0,其方向垂直于环面,如图所示.两环接触点A和C有良好的电接触,角α=π/3.若突然撤去磁场,求每个环具有的速度.构成环的这

1 / 46
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功