数学天地:初一年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211分析此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211,可利用通项11111nnnn,把每一项都做如此变形,问题会迎刃而解.解原式=)2007120061(......413131212111)()()(=2007120061......41313121211=200711=20072006例2已知有理数a、b、c在数轴上的对应点分别为A、B、C(如右图).化简bcbaa.分析从数轴上可直接得到a、b、c的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b0、c-b0.解由数轴知,a0,a-b0,c-b0所以,bcbaa=-a-(a-b)+(c-b)=-a-a+b+c-b=-2a+c例3计算:211311...9811991110011AOBCabc分析本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解原式=2132......9897999810099=1001例4计算:2-22-23-24-……-218-219+220.分析本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解原式=2-22-23-24-……-218+219(-1+2)=2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2)=2-22-23-24-……-217+218=……=2-22+23=6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:......1111baab200620061ba的值.(提示:此题可看作例1的升级版,求出a、b的值代入就成为了例1.)2、代数式ababbbaa的所有可能的值有()个(2、3、4、无数个)【参考答案】1、200820072、3字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当n=1,S=1①n=2,S=5②③n=3,S=9变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35x,把x、y的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解由3x-6y-5=0,得352yx所以2x-4y+6=2(x-2y)+6=6352=328例2已知代数式1)1(nnxx,其中n为正整数,当x=1时,代数式的值是,当x=-1时,代数式的值是.分析当x=1时,可直接代入得到答案.但当x=-1时,n和(n-1)奇偶性怎么确定呢?因n和(n-1)是连续自然数,所以两数必一奇一偶.解当x=1时,1)1(nnxx=111)1(nn=3当x=-1时,1)1(nnxx=1)1()1()1(nn=1例3152=225=100×1(1+1)+25,252=625=100×2(2+1)+25352=1225=100×3(3+1)+25,452=2025=100×4(4+1)+25……752=5625=,852=7225=(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.分析这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解(1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n(n+1)+25(3)20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数.(1)当n=4时,S=,(2)请按此规律写出用n表示S的公式.分析当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解(1)S=13(2)可列表找规律:n123…nS159…4(n-1)+1S的变化过程11+4=51+4+4=9…1+4+4+…+4=4(n-1)+1所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31,41,51,61①填空:第11,12,13三个数分别是,,;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式:1+1×3=22,1+2×4=32,1+3×5=42,……请将你找出的规律用公式表示出来:【参考答案】1、①111,121,1311;②20081;③0.2、1+n×(n+2)=(n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解找交点最多的规律:直线条数234…n交点个数136…2)1(nn交点个数变化过程11+2=31+2+3=6…1+2+3+…+(n-1)图形图1图2图3…例2两条平行直线m、n上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连()条直线.A.20B.36C.34D.22分析与解让直线m上的4个点和直线n上的5个点分别连可确定20条直线,再加上直线m上的4个点和直线n上的5个点各确定的一条直线,共22条直线.故选D.例3如图,OM是∠AOB的平分线.射线OC在∠BOM内,ON是∠BOC的平分线,已知∠AOC=80°,那么∠MON的大小等于_______.分析求∠MON有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解因为OM是∠AOB的平分线,ON是∠BOC的平分线,所以∠MOB=21∠AOB,∠NOB=21∠COB所以∠MON=∠MOB-∠NOB=21∠AOB-21∠COB=21(∠AOB-∠COB)=21∠AOC=21×80°=40°例4如图,已知∠AOB=60°,OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.(1)求∠DOE的大小;OBAMCNOBACDE图1图2图3(2)当OC在∠AOB内绕O点旋转时,OD、OE仍是∠BOC和∠AOC的平分线,问此时∠DOE的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析此题看起来较复杂,OC还要在∠AOB内绕O点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE是∠AOB的一半,也就是说要求的∠DOE,和OC在∠AOB内的位置无关.解(1)因为OC是∠AOB的平分线,OD、OE分别平分∠BOC和∠AOC.所以∠DOC=21∠BOC,∠COE=21∠COA所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA)=21∠AOB因为∠AOB=60°所以∠DOE=21∠AOB=21×60°=30°(2)由(1)知∠DOE=21∠AOB,和OC在∠AOB内的位置无关.故此时∠DOE的大小和(1)中的答案相同.【核心练习】1、A、B、C、D、E、F是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。解含分母的方程时要找出分母的最小公倍数,去掉分母,一定要添上括号,这样不容易出错.解含参数方程或绝对值方程时,要学会代入和分类讨论。列方程解应用题,主要是列方程,要注意列出的方程必须能解、易解,也就是列方程时要选取合适的等量关系。【典型例题】例1已知方程2x+3=2a与2x+a=2的解相同,求a的值.分析因为两方程的解相同,可以先解出其中一个,把这个方程的解代入另一个方程,即可求解.认真观察可知,本题不需求出x,可把2x整体代入.解由2x+3=2a,得2x=2a-3.把2x=2a-3代入2x+a=2得2a-3+a=2,3a=5,所以35a例2解方程31221xxx分析这是一个非常好的题目,包括了去分母容易错的地方,去括号忘变号的情况.解两边同时乘以6,得6x-3(x-1)=12-2(x+1)去分母,得6x-3x+3=12-2x-26x-3x+2x=12-2-35x=7x=57例3某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.分析这类问题我们应首先搞清楚利润率、销售价、进价之间的关系,因销售价=进价×(1+利润率),故还需设出进价,利用销售价不变,辅助设元建立方程.解:设原进价为x元,销售价为y元,那么按原进价销售的利润率为%100xxy,原进价降低后在销售时的利润率为%100%6.93%6.93xxy,由题意得:%100xxy+8%=%100%6.93%6.93xxy解得y=1.17x故这种商品原来的利润率为%10017.1xxx=17%.例4解方程│x-1│+│x-5│=4分析对于含一个绝对值的方程我们可分两种情况讨论,而对于含两个绝对值的方程,道理是一样的.我们可先找出两个绝对值的“零点”,再把“零点”放中数轴上对x进行讨论.解:由题意可知,当│x-1│=0时,x=1;当│x-5│=0时,x=5.1和5两个“零点”把x轴分成三部分,可分别讨论:1)当x1时,原方程可化为–(x-1)-(x-5)=4,解得x=1.因x1,所以x=1应舍去.2)当1≤x≤5时,原方程可化为(x-1)-(x-5)=4,解得4=4,所以x在1≤x≤5范围内可任