九年级数学《圆》知识点祥解及习题检测一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内dr点C在圆内;2、点在圆上dr点B在圆上;3、点在圆外dr点A在圆外;三、直线与圆的位置关系1、直线与圆相离dr无交点;2、直线与圆相切dr有一个交点;3、直线与圆相交dr有两个交点;四、圆与圆的位置关系外离(图1)无交点dRr;外切(图2)有一个交点dRr;相交(图3)有两个交点RrdRr;内切(图4)有一个交点dRr;内含(图5)无交点dRr;rddCBAO五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOBDOE;②ABDE;③OCOF;④弧BA弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵AOB和ACB是弧AB所对的圆心角和圆周角∴2AOBACB2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O中,∵C、D都是所对的圆周角∴CD推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙O中,∵AB是直径或∵90C∴90C∴AB是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直OEDCBAOCDABFEDCBAOCBAODCBAOCBAOCBAO角三角形。即:在△ABC中,∵OCOAOB∴△ABC是直角三角形或90C注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,∵四边形ABCD是内接四边形∴180CBAD180BDDAEC九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MNOA且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA、PB是的两条切线∴PAPBPO平分BPA十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙O中,∵弦AB、CD相交于点P,∴PAPBPCPD(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在⊙O中,∵直径ABCD,EDCBANMAOPBAOPODCBAOEDCBA∴2CEAEBE(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙O中,∵PA是切线,PB是割线∴2PAPCPB(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在⊙O中,∵PB、PE是割线∴PCPBPDPE十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:12OO垂直平分AB。即:∵⊙1O、⊙2O相交于A、B两点∴12OO垂直平分AB十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:12RtOOC中,22221122ABCOOOCO;(2)外公切线长:2CO是半径之差;内公切线长:2CO是半径之和。十四、圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在RtBOD中进行:::1:3:2ODBDOB;(2)正四边形同理,四边形的有关计算在RtOAE中进行,::1:1:2OEAEOA:(3)正六边形同理,六边形的有关计算在RtOAB中进行,::1:3:2ABOBOA.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180nRl;(2)扇形面积公式:213602nRSlRn:圆心角R:扇形多对应的圆的半径l:扇形弧长S:扇形面积2、圆柱:(1)圆柱侧面展开图2SSS侧表底=222rhrDECBPAOBAO1O2CO2O1BADCBAOECBADOBAOSlBAO母线长底面圆周长C1D1DCBA(2)圆柱的体积:2Vrh(2)圆锥侧面展开图(1)SSS侧表底=2Rrr(2)圆锥的体积:213Vrh九年级数学第二十四章圆测试题(A)时间:45分钟分数:100分一、选择题(每小题3分,共33分)1.若⊙O所在平面内一点P到⊙O上的点的最大距离为10,最小距离为4则此圆的半径为()A.14B.6C.14或6D.7或32.如图24—A—1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.83.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40°B.80°C.160°D.120°4.如图24—A—2,△ABC内接于⊙O,若∠A=40°,则∠OBC的度数为()A.20°B.40°C.50°D.70°5.如图24—A—3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位6.如图24—A—4,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°7.如图24—A—5,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5B.7C.8D.108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是()B1RrCBAO图24—A—5图24—A—1图24—A—2图24—A—3图24—A—4A.26mB.26mC.212mD.212m9.如图24—A—6,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是()A.16πB.36πC.52πD.81π10.已知在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为()A.310B.512C.2D.311.如图24—A—7,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依A、B、C、D、E、F、C、G、A的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm后才停下来,则蚂蚁停的那一个点为()A.D点B.E点C.F点D.G点二、填空题(每小题3分,共30分)12.如图24—A—8,在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,则∠AOC=。13.如图24—A—9,AB、AC与⊙O相切于点B、C,∠A=50゜,P为⊙O上异于B、C的一个动点,则∠BPC的度数为。14.已知⊙O的半径为2,点P为⊙O外一点,OP长为3,那么以P为圆心且与⊙O相切的圆的半径为。15.一个圆锥的底面半径为3,高为4,则圆锥的侧面积是。16.扇形的弧长为20πcm,面积为240πcm2,则扇形的半径为cm。17.如图24—A—10,半径为2的圆形纸片,沿半径OA、OB裁成1:3两部分,用得到的扇形围成圆锥的侧面,则圆锥的底面半径分别为。18.在Rt△ABC中,∠C=90゜,AC=5,BC=12,以C为圆心,R为半径作圆与斜边AB相切,则R的值为。19.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为。20.已知扇形的周长为20cm,面积为16cm2,那么扇形的半径为。21.如图24—A—11,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D。若AC=8cm,DE=2cm,则OD的长为cm。图24—A—6图24—A—7图24—A—8图24—A—9图24—A—10图24—A—11三、作图题(7分)22.如图24—A—12,扇形OAB的圆心角为120°,半径为6cm.⑴请用尺规作出扇形的对称轴(不写做法,保留作图痕迹).⑵若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面积.四.解答题(23小题8分、24小题10分,25小题12分,共30分)23.如图24—A—13,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD。24.如图24—A—14,已知⊙O的半径为8cm,点A为半径OB的延长线上一点,射线AC切⊙O于点C,BC的长为cm38,求线段AB的长。25.已知:△ABC内接于⊙O,过点A作直线EF。(1)如图24—A—15,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):①;②;③。(2)如图24—A—16,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线。⌒图24—A—13图24—A—12图24—A—14图24—A—15图24—A—16第二十四章圆(A)一、选择题1.D2.D3.C4.C5.B6.D7.D8.B9.B10.A11.A二、填空题12.30゜13.65゜或115゜14.1或515.15π16.2417.2321或18.136019.820.2或821.3三、作图题22.(1)提示:作∠AOB的角平分线,延长成为直线即可;(2)∵扇形的弧长为)(41806120cm,∴底面的半径为cm224,∴圆锥的底面积为42cm。23.证明:∵AD=BC,∴AD=BC,∴AD+BD=BC+BD,即AB=CD,∴AB=CD。24.解:设∠AOC=n,∵BC的长为cm38,∴180838n,解得60n。∵AC为⊙O的切线,∴△AOC为直角三角形,∴OA=2OC=16cm,∴AB=OA-OB=8cm。25.(1)①BA⊥EF;②∠CAE=∠B;③∠BAF=90°。(2)连接AO并延长交⊙O于点D,连接CD,则AD为⊙O的直径,∴∠D+∠DAC=90°。∵∠D与∠B同对弧AC,∴∠D=∠B,又∵∠CAE=∠B,∴∠D=∠CAE