命题-定理-证明-习题-(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

试卷第1页,总16页2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列选项中,可以用来说明命题“若|𝑥|1,则𝑥1”是假命题的反例是()A.𝑥=−2B.𝑥=−1C.𝑥=1D.𝑥=2【答案】A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【详解】用来证明命题“若|𝑥|1,则𝑥1”是假命题的反例可以是:𝑥=−2,∵|−2|1,但是𝑥=−21,∴A正确;故选:A.【点睛】考查反证法,证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题叫做反证法.2.下列命题:①内错角相等;②同旁内角互补;③直角都相等;④若n<1,则n2﹣1<0.其中真命题的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据内错角、同旁内角和直角以及平方进行判断即可.【详解】①内错角相等,是假命题;②同旁内角互补,是假命题;③直角都相等,是真命题;④若n<1,则n2-1<0,是假命题.故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.试卷第2页,总16页3.下列命题中,是真命题的是()A.若|a|=|b|,那么a=bB.如果ab0,那么a,b都是正数C.两条平行线被第三条直线所截,同旁内角互补D.两条直线与第三条直线相交,同位角相等【答案】C【解析】【分析】分别根据绝对值、有理数乘法符号规律以及平行线性质分析得出即可.【详解】解:A、若|a|=|b|,那么a=b,或a=-b,故此选项A错误;B、如果ab0,那么a,b都是同号,此选项B错误;C.两条平行线被第三条直线所截,同旁内角互补,故此选项C正确;D、两平行直线被第三条直线所截,同位角相等.选项中未指明两直线是否平行,故此选项D错误;故选:C.【点睛】此题主要考查了命题与定理,正确灵活的掌握相关性质和定理是解题关键.4.下列命题:①有一个角为60∘的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】(1)分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案;(2)根据等边三角形的判定、线段垂直平分线的性质、等腰三角形的性质以及直角三角形的性质求解即可求得答案【详解】试卷第3页,总16页解:①有一个角为60°的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.【点睛】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有1和0;③在同一平面内,如果𝑎⊥𝑏,𝑏⊥𝑐,则𝑎⊥𝑐;④直线𝑐外一点𝐴与直线𝑐上各点连接而成的所有线段中,最短线段的长是5𝑐𝑚,则点𝐴到直线𝑐的距离是5𝑐𝑚;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平行公理、平方根与立方根的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】①过直线外一点有且只有一条直线与已知直线平行,故①是假命题;②平方根与立方根相等的数只有0,故②是假命题;③在同一平面内,如果𝑎⊥𝑏,𝑏⊥𝑐,,则a∥c,故③是假命题;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A到直线c的距离是5cm,故④是真命题;⑤无理数包括正无理数和负无理数,故⑤是假命题;故选A.【点睛】本题考查命题与定理,解题的关键是熟练掌握平行公理、平方根与立方根的定义、两直线的位置关系等知识.6.下列命题是假命题的是()A.同位角相等试卷第4页,总16页B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.平行于同一条直线的两直线平行D.两直线平行,内错角相等【答案】A【解析】【分析】根据平行线的性质对A、C、D进行判断;利用在同一平面内,过一点有且只有一条直线与已知直线垂直对B进行判断.【详解】解:A、两直线平行,同位角相等,所以A选项为假命题;B、在同一平面内,过一点有且只有一条直线与已知垂直,所以B选项为真命题;C、平行于同一条直线的两直线平行,所以C选项为真命题;D、两直线平行,内错角相等,所以D选项为真命题.故选:A.【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为180∘【答案】A【解析】【分析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;试卷第5页,总16页故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.下列说法中,正确的是()A.所有的命题都有逆命题B.所有的定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【答案】A【解析】【分析】根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D进行判断.【详解】选项A,每个命题都有逆命题,所以A选项正确;选项B,每个定理不一定有逆定理,所以B选项错误;选项C,真命题的逆命题不一定是真命题,所以C选项错误;选项D,假命题的逆命题不一定是假命题,所以D选项错误.故选A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列语句不是命题的是()A.明天有可能下雨B.同位角相等C.∠A是锐角D.中国是世界上人口最多的国家【答案】A【解析】【分析】根据命题的概念逐一进行分析即可得到答案.【详解】A、明天有可能下雨,不是判断语句,故不是命题,符合题意;B、同位角相等是命题,故不符合题意;试卷第6页,总16页C、∠A是锐角是命题,故不符合题意;D、中国是世界上人口最多的国家是命题,故不符合题意,故选A.【点睛】本题主要考查了命题的概念.判断一件事情的语句叫做命题.10.在期中考试中,同学甲、乙、丙、丁分别获得第一、第二、第三、第四名.在期末考试中,他们又是班上的前四名.如果他们当中只有一位的排名与期中考试中的排名相同,那么排名情况有()种可能.A.5B.6C.7D.8【答案】D【解析】【分析】根据他们当中只有一位的排名与期中考试中的排名相同有4种可能,分别列举,【详解】解:他们当中只有一位的排名与期中考试中的排名相同有4种可能,第二位同学的排名有2种可能,第三位与第四位的排名是确定的.(如:甲的排名没有变,仍为第一,则乙到了第三或第四.假设乙到了第四,则丙就是第二,丁第三.)所以有2×4=8种.故选:D.【点睛】此题主要考查了枚举法的应用,根据已知得出所有的结果,以及分类讨论得出是解题关键.11.一座大楼有4部电梯,每部电梯可停靠六层(不一定是连续六层,也不一定停最底层).对大楼中任意的两层,至少有一部电梯可同时停靠,则这座大楼最多有()层.A.11B.12C.13D.14【答案】A【解析】【分析】首先把楼层看作点,大楼中任意的两层,有一部电梯都可停靠,则两层所代表的点之间可以连一条线段,进而得出四部电梯最多可以连15×4=60条线段,再求出楼层与线段条试卷第7页,总16页数关系,进而得出答案.【详解】解:首先把楼层看作点,大楼中任意的两层,有一部电梯都可停靠,则两层所代表的点之间可以连一条线段,每部电梯可停靠六层,则这六层所代表的点之间可以连:5+4+3+2+1=15条线段,则四部电梯最多可以连15×4=60条线段,∵7层楼需要:6+5+4+3+2+1=21条线段,8层楼需要:7+6+5+4+3+2+1=28条线段,9层楼需要:8+7+6+5+4+3+2+1=36条线段,10层楼需要:9+8+7+6+5+4+3+2+1=45条线段,11层楼需要:10+9+8+7+6+5+4+3+2+1=55条线段,12层楼需要:11+10+9+8+7+6+5+4+3+2+1=66条线段,∴这个大楼的层数不超过11层.故选:A.【点睛】此题主要考查了推理与论证,将楼层看作点数进而求出线段条数进而求出是解题关键.12.“两点确定一条直线”这句话是()A.定理B.基本事实C.结论D.定义【答案】B【解析】【分析】两点确定一条直线是个陈述句,是事实存在的,属于基本事实.【详解】解:“两点确定一条直线”这句话是基本事实;故选:B.【点睛】此题考查了命题与定理、公理,要熟悉课本中的性质定理是解题的关键,是一道基础题.13.下列命题中,真命题是()A.当路程一定时,时间与速度成正比例B.“全等三角形的面积相等”的逆命题是真命题C.√𝑎2−𝑏2是最简二次根式D.到直线AB的距离等于1厘米的点的轨迹是平行于直线AB且和AB距离为1cm的试卷第8页,总16页一条直线【答案】C【解析】【分析】利用路程、速度、时间的关系、全等三角形的性质、最简二次根式的定义及轨迹的定义分别判断后即可确定正确的选项.【详解】A、当路程一定时,时间与速度成反比例,故本选项错误;B、“全等三角形的面积相等”的逆命题是面积相等的三角形全等,是假命题,故本选项错误;C、√𝑎2−𝑏2是最简二次根式,故本选项正确;D、空间内与直线AB距离等于1厘米的点的轨迹是平行于直线AB且和AB距离为1cm的无数条直线,故本选项错误;故选:C.【点睛】本题考查命题与定理,解题的关键是根据相关知识点判断每个命题的真假.14.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°【答案】D【解析】【分析】熟记反证法的步骤,直接选择即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即假设三角形中没有一个内角小于或等于60°.故选:D.【点睛】此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.15.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形试卷第9页,总16页C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形【答案】D【解析】【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【详解】解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;D、对角线相互垂直平分且相

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功