动能定理应用专题一、知识讲解1、应用动能定理巧解多过程问题。物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,如能对整个过程利用动能定理列式则使问题简化。例1、如图所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?分析与解:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。设其经过和总路程为L,对全过程,由动能定理得:200210cossinmvLngmgS得cos21sinmgS200mgmvL2、利用动能定理巧求动摩擦因数例2、如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。分析与解:滑块从A点滑到C点,只有重力和摩擦力做功,设滑块质量为m,动摩擦因数为,斜面倾角为,斜面底边长s1,水平部分长s2,由动能定理得:mghmgsmgshSShscoscos1212000化简得:得从计算结果可以看出,只要测出斜面高和水平部分长度,即可计算出动摩擦因数。V0S0αPABChS1S2α3、利用动能定理巧求机车脱钩问题例3、总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力,如图13所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少?分析与解:此题用动能定理求解比用运动学、牛顿第二定律求解简便。对车头,脱钩后的全过程用动能定理得:201)(21)(VmMgSmMkFL对车尾,脱钩后用动能定理得:20221mVkmgS而21SSS,由于原来列车是匀速前进的,所以F=kMg由以上方程解得mMMLS。4、巧用fsQ简解摩擦生热问题两个物体相互摩擦而产生的热量Q(或说系统内能的增加量)等于物体之间滑动摩擦力f与这两个物体间相对滑动的路程的乘积,即Q=fS相.利用这结论可以简便地解答高考试题中的“摩擦生热”问题。例4、如图所示,在一光滑的水平面上有两块相同的木板B和C。重物A(A视质点)位于B的右端,A、B、C的质量相等。现A和B以同一速度滑向静止的C,B与C发生正碰。碰后B和C粘在一起运动,A在C上滑行,A与C有摩擦力。已知A滑到C的右端面未掉下。试问:从B、C发生正碰到A刚移动到C右端期间,C所走过的距离是C板长度的多少倍?分析与解:设A、B、C的质量均为m。B、C碰撞前,A与B的共同速度为V0,碰撞后B与C的共同速度为V1。对B、C构成的系统,由动量守恒定律得:mV0=2mV1设A滑至C的右端时,三者的共同速度为V2。对A、B、C构成的系统,由动量守恒定律得:2mV0=3mV2设C的长度为L,A与C的动摩擦因数为μ,则据摩擦生热公式和能量守恒定律可得:2220213.21212.21mVmVmVmgLQS2S1LV0V0ABC设从发生碰撞到A移至C的右端时C所走过的距离为S,则对B、C构成的系统据动能定理可得:2122)2(21)2(21VmVmmgS由以上各式解得37LS.二、课堂检测1.质量不等,但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则下列说法正确的有()A.质量大的物体滑行距离大B.质量小的物体滑行距离大C.质量大的物体滑行时间长D.质量小的物体滑行时间长2.一个木块静止于光滑水平面上,现有一个水平飞来的子弹射入此木块并深入2cm而相对于木块静止,同时间内木块被带动前移了1cm,则子弹损失的动能、木块获得动能以及子弹和木块共同损失的动能三者之比为()A.3∶1∶2B.3∶2∶1C.2∶1∶3D.2∶3∶13.(2010·江门模拟)起重机将物体由静止举高h时,物体的速度为v,下列各种说法中正确的是(不计空气阻力)()A.拉力对物体所做的功,等于物体动能和势能的增量B.拉力对物体所做的功,等于物体动能的增量C.拉力对物体所做的功,等于物体势能的增量D.物体克服重力所做的功,大于物体势能的增量4.小球由地面竖直上抛,上升的最大高度为H,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h处,小球的动能是势能的2倍,在下落至离地高度h处,小球的势能是动能的2倍,则h等于()A.H9B.2H9C.3H9D.4H95.如图所示,一轻弹簧直立于水平地面上,质量为m的小球从距离弹簧上端B点h高处的A点自由下落,在C点处小球速度达到最大.x0表示B、C两点之间的距离;Ek表示小球在C处的动能.若改变高度h,则下列表示x0随h变化的图象和Ek随h变化的图象中正确的是(BC)6.如图所示,在光滑四分之一圆弧轨道的顶端a点,质量为m的物块(可视为质点)由静止开始下滑,经圆弧最低点b滑上粗糙水平面,圆弧轨道在b点与水平轨道平滑相接,物块最终滑至c点停止.若圆弧轨道半径为R,物块与水平面间的动摩擦因数为μ,下列说法正确的是()A.物块滑到b点时的速度为gRB.物块滑到b点时对b点的压力是2mgC.c点与b点的距离为RμD.整个过程中物块机械能损失了mgR7.如图5-2-15所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A,B间摩擦力的作用,A将在B上滑动,以地面为参考系,A和B都向前移动一段距离,在此过程中()A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功等于A的动能的增量C.A对B的摩擦力所做的功等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和8.构建和谐型、节约型社会深得民心,遍布于生活的方方面面.自动充电式电动车就是很好的一例,电动车的前轮装有发电机,发电机与蓄电池连接.当在骑车者用力蹬车或电动自行车自动滑行时,自行车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以500J的初动能在粗糙的水平路面上滑行,第一次关闭自充电装置,让车自由滑行,其动能随位移变化关系如图①所示;第二次启动自充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是()A.200JB.250JC.300JD.500J9.如图,卷扬机的绳索通过定滑轮用力F拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动.在移动过程中,下列说法正确的是()A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B.F对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C.木箱克服重力做的功等于木箱增加的重力势能D.F对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和10.质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()A.41mgRB.31mgRC.21mgRD.mgR11.如图所示,AB与CD为两个对称斜面,其上部都足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R=2.0m,一个物体在离弧底E高度为h=3.0m处,以初速度V0=4m/s沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g=10m/s2).12.如图所示,斜面倾角为α,长为L,AB段光滑,BC段粗糙,且BC=2AB。质量为m的木块从斜面顶端无初速下滑,到达C端时速度刚好减小到零。求物体和斜面BC段间的动摩擦因数μ。13.如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。14.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m。小球到达槽最低点时速率为10m/s,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次,设摩擦力恒定不变,求:(设小球与槽壁相碰时不损失能量)(1)小球第一次离槽上升的高度h;(2)小球最多能飞出槽外的次数(取g=10m/s2)。15.一个圆柱形的竖直的井里存有一定量的水,井的侧面和底部是密闭的.在井中固定地插着一根两端开口的薄壁圆管,管和井共轴,管下端未触及井底,在圆管内有一个不漏气的活塞,它可沿圆管上下滑动.开始时,管内外水面相齐,且活塞恰好接触水面,如图所示.现用卷扬机通过绳子对活塞施加一个向上的力F,使活塞缓慢向上移动.已知管筒半径r=0.100m,井的半径R=2r,水的密度ρ=1.00×103kg/m3,大气压p0=1.00×105Pa.ABCDDOREhαCBA求活塞上升H=9.00m的过程中拉力F所做的功.(井和管在水面以上及水面以下的部分都足够长.不计活塞质量,不计摩擦,重力加速度g=10m/s2)16.如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看作质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与轨道AB间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E时,对圆弧轨道的压力;(3)为使物体能顺利到达圆弧轨道的最高点D,释放点距B点的距离L′应满足什么条件.11、分析与解:由于滑块在斜面上受到摩擦阻力作用,所以物体的机械能将逐渐减少,最后物体在BEC圆弧上作永不停息的往复运动。由于物体只在在BEC圆弧上作永不停息的往复运动之前的运动过程中,重力所做的功为WG=mg(h-R/2),摩擦力所做的功为Wf=-μmgscos600,由动能定理得:mg(h-R/2)-μmgscos600=0-2021mV∴s=280m.12、解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgLsinα,摩擦力做的功为cos32mgL,支持力不做功。初、末动能均为零。mgLsinαcos32mgL=0,tan2313、解:物体在从A滑到C的过程中,有重力、AB段的阻力、BC段的摩擦力共三个力做功,WG=mgR,fBC=μmg,由于物体在AB段受的阻力是变力,做的功不能直接求。根据动能定理可知:W外=0,所以mgR-μmgS-WAB=0即WAB=mgR-μmgS=1×10×0.8-1×10×3/15=6J14、解:(1)小球从高处至槽口时,由于只有重力做功;由槽口至槽底端重力、摩擦力都做功。由于对称性,圆槽右半部分摩擦力的功与左半部分摩擦力的功相等。小球落至槽底部的整个过程中,由动能定理得221)(mvWRHmgf解得221)(2mvRHmgWfJ由对称性知小球从槽底到槽左端口摩擦力的功也为2fWJ,则小球第一次离槽上升的高度h,由221)(mvWRHmgf得mgmgRWmvhf221=4.2m(2)设小球飞出槽外n次,则由动能定理得02fWnmgH∴25.64252fWmgHn即小球最多能飞出槽外6次。15、解:从开始提升到活塞升至内外水面高度差为h0=gp0=10m的过程中,活塞始终与管内液体接触(再提升活塞时,活塞和水面之间将出现真空,另行讨论).设活塞上升距离为h1,管外液面下降距离为h2(如图所