1浅谈超级电容器在电力系统中的应用杜蕾佶,Z13030508,国网宁波供电公司,从事营销低压用电检查工作一、超级电容器的概述1.1超级电容器产品介绍超级电容器,又叫双电层电容器、电化学电容器,黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。超级电容器是建立在德国物理学家亥姆霍兹提出的界面双电层理论基础上的一种全新的电容器。众所周知,插入电解质溶液中的金属电极表面与液面两侧会出现符号相反的过剩电荷,从而使相间产生电位差。那么,如果在电解液中同时插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压,这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层。它所形成的双电层和传统电容器中的电介质在电场作用下产生的极化电荷相似,从而产生电容效应,紧密的双电层近似于平板电容器,但是,由于紧密的电荷层间距比普通电容器电荷层间的距离更小得多,因而具有比普通电容器更大的容量。双电层电容器与铝电解电容器相比内阻较大,因此,可在无负载电阻情况下直接充电,如果出现过电压充电的情况,双电层电容器将会开路而不致损坏。这一特点与铝电解电容器的过电压击穿不同。同时,双电层电容器与可充电电池相比,可进行不限流充电,且充电次数可达10^6次以上,因此双电层电容不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊元器件。浅谈超级电容器在电力系统中的应用21.2超级电容器的性能目前应用于超级电容器的电极材料有3种:炭基材料、金属氧化物材料和导电聚合物材料。炭基材料电化学电容器能量储存的机理主要是靠炭表面附近形成的双电层,因此通常称为双电层电容。而金属氧化物和导电聚合物主要靠氧化还原反应产生的赝电容:在这里,我们主要介绍炭基材料及金属氧化物材料。炭基电极材料炭材料具有粉末、块状、纤维状、布、毡等多种形态,具有以下独特的物理和化学性质,包括:(1)高电化学导电性(2)高比表面积(3000m2.g-1)(3)很好的防腐性能(4)高热稳定性(5)可控的孔结构(6)可调的表面化学性质(7)复合材料具有兼容性且易加工(8)廉价易得因为具有以上多种形态及特点,炭材料被广泛的用作超级电容器的电极材料。炭材料能在不同的溶液中(从强酸到强碱)保持化学性质的稳定,并且能在较宽的温度范围下工作。通常电容值正比于电极材料的电化学活性面积和电解液的相对介电常数,而与所形成的双电层厚度成反比。理论上,多孔炭材料的比表面积越大,比电容越高。炭材料的多孔结构决定了离子的传输,且孔道内电解液离子的迁移率和EDLC的性能密切相关。研究发现炭材料的电化学导电性严重影响电化学双电层电容器的厚度。由炭材料表面上的官能团决定的炭材料的表面湿度是影响电容器性能的另一个因素。在这些因素中,最重要的就是要达到比表面积积和直径分布的一个平衡点。浅谈超级电容器在电力系统中的应用31.3超级电容器的工作原理超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。1.4超级电容器优点由于超级电容器的结构及工作原理使其具有如下特点:1.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3554个数量级,目前单体超级电容器的最大电容量浅谈超级电容器在电力系统中的应用4可达5000F。2.充放电寿命很长,可达500000次,或90000小时,而蓄电池的充放电寿命很难超过1000次,3.可以提供很高的放电电流(如2700F的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A,一般蓄电池通常不能有如此高的放电电流一些高放电电流的蓄电池在杂如此高的放电电流下的使用寿命将大大缩短。4.可以数十秒到书分钟内快速充电,而蓄电池再如此短的时间内充满电将是极危险的或几乎不可能。5.可以在很宽的温度范围内正常工作(-40—+70℃)而蓄电池很难在高温特别是低温环境下工作。6.超级电容器用的材料是安全的和无毒的,而铅酸蓄电池、镍镉蓄电池军具有毒性。7.等效串联电阻ESR相对常规电容器大(10F/2.5V的ESR为110mΩ)。8.可以任意并联使用一增加电容量,如采取均压后,还可以串联使用二、超级电容器在国内外的发展状况超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、铁路、通信、国防、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。由于超级电容器具有充放电速度快、对环境无污染、循环寿命长等优点,有希望成为本世纪新型的绿色能源。当前,国内厂商纷纷推出产能扩张项目,产品也更加全面,产能正节节攀升。即使如此,由于国内能规模生产的厂家较少,年供应量不到500万只,这样的生产规模还远远无法满足国内市场的需求,所以国内大多数用户还是通过进口来满足需要。在市场需求迅速增长的强力推动下,国内现有的超级电容器生产企业正积极融资扩产,国际超级电容器生产大鳄也把战浅谈超级电容器在电力系统中的应用5略投资的目光锁定中国,而相关的生产企业(如铝电解电容器生产企业)也正跃跃欲试准备介入这一新兴市场。目前,在发达国家,超级电容器的应用备受重视,俄罗斯已在载重汽车上批量采用,德国也在客车启动上应用此类产品,这些产品正在向规模化、市场化、大众化方向迅速发展。而在国内,超级电容器的应用尚处于起步阶段。在钮扣型超级电容器市场中,海外产品几乎占据了90%以上的份额,竞争异常激烈。中国厂商正采取替代手段,利用低价策略(约为国外产品的40%~60%)、快速供货、销售布局完善,对中国终端应用市场更加熟悉,技术支持与服务优于国际品牌等各种优势来争夺市场。在卷绕型和大型超级电容器方面,中国产品的技术水平与国际接近,市场份额较为理想。三、超级电容器的应用前景超级电容器作为产品已趋于成熟,其应用范围也不断拓展,在工业、消费电子、通讯、医疗器械、国防、军事装备、交通等领域得到越来越广泛的应用。从小容量的特殊储能到大规模的电力储能,从单独储能到与蓄电池或燃料电池组成的混合储能,超级电容器都展示出了独特的优越性。美、欧、日、韩等发达国家和地区对超级电容器的应用进行了卓有成效的研究。概括起来,有关超级电容器的应用或应用研究可以分为以下几个方面。1、小功率电子设备的后备电源、替换电源或主电源1)后备电源。当主电源中断、由于振动产生接触不良或由于其他重载引起系统电压降低时,超级电容器就能够起后备电源作用。其电量通常在微安或毫安级。典型的应用有:录像机、TV卫星接收器、汽车音频系统、出租车的计量器、无线电波接收器、出租计费器、闹钟、控制器、家用面包机、咖啡机、照相机和电视机、计数器、移动电话、寻呼机等。2)替换电源。由于超级电容器具有高充放电次数、寿命长、使用温度范围宽、循环效率高以及低自放电的特点,故很适合做替换电源。例如,白浅谈超级电容器在电力系统中的应用6天太阳能提供电源并对超级电容器充电,晚上则由超级电容器提供电源。典型的应用有太阳能手表、路标灯、公共汽车停车站时间表灯、交通信号灯等,它们能长时间使用,不需要任何维护。3)主电源。通过一个或几个超级电容器释放持续几毫秒到几秒的大电流。放电之后,超级电容器再由低功率的电源充电。其典型的应用有玩具车,其体积小、重量轻,能很快跑动。2、电动汽车和混合电动汽车电动汽车的动力源有铅酸电池、镍氢电池、锂离子电池以及燃料电池等。普通电池虽然能量密度高,行驶里程长,但是存在充电时间长、无法大电流充电、工作寿命短等不足。与之相比,超级电容器功率大,充电速度快,输出功率大,刹车再生能量回收效率高。由于超级电容器的寿命是普通化学电池的100倍以上且彻底免维护,使用超级电容器作为动力源的城市交通电动汽车综合运营成本大大低于采用电池作为动力源的电动汽车。目前世界各国都在开发电动汽车,主要倾向是开发混合电动汽车(HEV),用电池为电动汽车的正常运行提供能量,而加速和爬坡时可以由超级电容器来补充能量。另外,用超大容量电容器存储制动时产生的再生能量。在电动车辆行驶时,起步快,加速快,爬坡能力强。3、可再生能源发电系统/分布式电力系统在可再生能源发电或分布式电力系统中,发电设备的输出功率具有不稳定性和不可预测性的特点。采用超级电容器储能,可以充分发挥其功率密度大、循环寿命长、储能密度高、无需维护等优点,既可以单独储能,也可以与其他储能装置混合储能。超级电容器与太阳能电池相结合,可以应用于路灯、交通警示牌、交通标志灯等。超级电容器还应用于风力发电、燃料电池等分布式发电系统,可以对系统起到瞬间功率补偿的作用,并可以在发电中断时作为备用电源,以提高供电的稳定性和可靠性。4、变频驱动系统的能量缓冲器超级电容器与功率变换器构成能量的缓冲器,可以用于电梯等变频驱动系统。当电梯上升时,能量缓冲器向驱动系统中的直流母线供电,提供电机所需的峰值功率;在电梯减速下降过程中,吸收电机通浅谈超级电容器在电力系统中的应用7过变频器向直流母线回馈的能量。5、军事装备领域军用装备,尤其是野战装备,大多不能直接由公共电网供电,而需要配置发电设备及储能装置。军用装备对储能单元的要求是可靠、轻便、隐蔽性强。采用超级电容器与蓄电池混合储能,可以大幅度减轻电台等背负设备的重量;为军用运输车、坦克车、装甲车等解决车辆低温启动困难的问题,还可提升车辆的动力性和隐蔽性;解决常规潜艇中蓄电池失效快、寿命短的问题;还可以为雷达、通信及电子对抗系统等提供峰值功率,以减小主供电电源的功率等级。四、超级电容器的发展方向1、社会需求带动超级电容器产业飞速发展。一方面,世界上关于能源危机和绿色环保的呼声越来越高,为了解决这个难题,人类正在积极寻求解决方案;另一方面,随着电子工业的发展,能够为各种电子设备提供高容量、便携备用电源的需求也很迫切,正是这些需求,带动了超级电容器的发展。从一些统计数据可以看出,超级电容器的国际市场广阔,国内市场基本还没有形成,这就预示着无限商机。美国、欧洲和日本都在积极开展电动汽车用超级电容的研究开发工作。美国能源部和USABC从1992年开始,组织国家实验室和工业界(Maxwell公司,GE公司等)联合开发使用碳材料的双电层超级电容器。其研究的初期目标是在维持功率密度为1kW/kg的同时,把超级电容器的能量密度提高到5W·h/kg。这一目标已经基本达到。有关资料表明,如果超级电容的比能量达到20W·h/kg,那么用于混合车将是比较理想的。1996年欧共体制定了电动汽车超级电容器发展计划。由SAFT公司领导,目标是比能量达到6W·h/kg,比功率达到1500W/kg,循环寿命超过10万次,满足电化学电池和燃料电池电动汽车要