光学实验实验报告课程名称:光学实验姓名:伍金霄学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:05122012指导教师:刘娟2014年12月24日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。二.实验原理:1反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0rktilllleEEl=i,r,t式中,脚标i、r、t分别代表入射光、反射光和折射光;r是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1平面光波在界面上的反射和折射图2-2ki、kr、kt三波矢关系根据电磁场的边界条件,可以得到如下关系0)(0)(tiritrirkkrkk这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,ki、kr和kt波矢关系如图2-2所示。进一步可得ttiirriisinsinsinsinkkkk或ttiirriisinsinsinsinnnnn即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。折射定律又称为斯涅耳(Snell)定律。2菲涅耳公式s分量和p分量通常把垂直于入射面振动的分量称做s分量,把平行于入射面振动的分量称做p分量。为讨论方便起见,规定s分量和p分量的正方向如图2-3所示。图2-3s分量和p分量的正方向反射系数和透射系数假设介质中的电场矢量为)(i0erktlllEEl=i,r,t其s分量和p分量表示式为)(i0erktlmlmlEEm=s,p则定义s分量、p分量的反射系数、透射系数分别为tmtmmimrmmEEtEEr0000菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s分量、p分量的正方向规定,可得tsrssEEEi和2tp1rp1ipcoscoscosHHH利用EH,上式变为22ts11rsiscoscos)(nEnEE再利用折射定律,消去Ets,经整理可得)sin()sin(1212isrsEE根据反射系数定义,得到)sin()sin(2121sr221111coscoscos2nnnts将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112211212100tantantantancoscoscoscos)sin()sin(nnnnEErisrss2121211221122121002sin2sin2sin2sincoscoscoscos)tan()tan(nnnnEEriprpp21121121112100221111212100coscoscos2)cos()sin(sincos2coscoscos2)sin(sincos2nnnEEtnnnEEtiptppistss这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。于是,如果已知界面两侧的折射率n1、n2和入射角θ1,就可由折射定律确定折射角θ2,进而可由上面的菲涅耳公式求出反射系数和透射系数。图2-4绘出了在n1<n2(光由光疏介质射向光密介质)和n1>n2(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角θ1的变化曲线。图2-4rs、rp、ts、tp随入射角θ1变化曲线反射系数与透射系数不仅反映了反射光和透射光相对于入射光的振幅改变,它还反映了反射光和透射光相对于入射光的相移。图2-6给出了反射光随入射角产生的相位改变。图2-5rs、rp随入射角θ1变化。(a)(b)为光疏到光密的情况;(c)(d)为光密到光疏的情况3反射率和透射率菲涅耳公式给出了入射光、反射光和折射光之间的场振幅和相位关系。不计吸收、散射等能量损耗,入射光能量在反射光和折射光中重新分配,而总能量保持不变。图2-6光束截面积在反射和折射时的变化(在分界面上光束截面积为1)如图2-6所示,若有一个平面光波以入射角θ1斜入射到介质分界面,平面光波的强度为Ii,则每秒入射到界面上单位面积的能量为Wi=Iicosθ1由此可以得到反射率、透射率的表达式分别为2irrWWR21122itcoscostnnWWT将菲涅耳公式代入,即可得到入射光中s分量和p分量的反射率和透射率的表示式分别为)(sin)(sin2122122ssrR)(tan)(tan2122122pprR)(sin2sin2sincoscos212212s1122stnnT)(cos)(sin2sin2sincoscos212212212p1122ptnnT显然有11ppssTRTR综上所述,光在介质界面上的反射、透射特性由三个因素决定:入射光的偏振态,、入射角、界面两侧介质的折射率。反射率随入射角的变化关系见图2-7.图2-7R随入射角θ1变化曲线三.实验流程2、实验程序光密到光疏clcclearalln01=1.52;n02=1;thta1=0:pi/90:pi/2;%以每两度取点thta2=asin(sin(thta1)*1.52/1);%a为透射角,b为入射角开始n1n2n1n2定义入射角θ1的范围(0~π/2),和步长π/90,根据透射定理可以计算出透射角θ2n1和n2都已知,θ1为自变量,由θ1确定了θ2,将所有量代入菲涅耳公式中求出布儒斯特角和全反射角rs,rp,ts,tp,的变化图像画图1,根据rp的正负来作为条件对相位进行计算画图2,根据所计算出的布儒斯特角和全反射角作为条件划定范围来对相位进行计算和画图%c=b*pi/180;n=46;fori=1:nifthta1(i)(41.8*pi/180);%rs1(i)=(1.52*cos(thta1(i))-1*cos(thta2))./(1.52*cos(thta2(i))+1*cos(thta2));rs=abs((1.52*cos(thta1)-1*cos(thta2))./(1.52*cos(thta1)+1*cos(thta2)));rp=abs((1*cos(thta1)-1.52*cos(thta2))./(1*cos(thta1)+1.52*cos(thta2)));ts=abs((2*1.52*cos(thta1))./(1.52*cos(thta1)+1*cos(thta2)));tp=abs((2*1.52*cos(thta1))./(1*cos(thta1)+1.52*cos(thta2)));elsers=(1.52*cos(thta1)-1*cos(thta2))./(1.52*cos(thta1)+1*cos(thta2));rp=(1*cos(thta1)-1.52*cos(thta2))./(1*cos(thta1)+1.52*cos(thta2));ts=(2*1.52*cos(thta1))./(1.52*cos(thta1)+1*cos(thta2));tp=(2*1.52*cos(thta1))./(1*cos(thta1)+1.52*cos(thta2));endendsubplot(2,2,1)plot(thta1,rs,'g-*')holdonplot(thta1,rp,'g:*')holdonplot(thta1,ts,'b-*')holdonplot(thta1,tp,'b:*')holdonxlabel('入射角');ylabel('反射系数/透射系数');legend('rs','rp','ts','tp')title('反射光与透射光振幅的变化','fontname','宋体','color','blue','fontsize',16);gridon%第二个图rs%m=43;%布儒斯特角大概为30度fori=1:nrs=(1.52*cos(thta1)-1*cos(thta2))./(1.52*cos(thta2)+1*cos(thta2));ifthta1(i)=(41.8*pi/180);%小于全反射角时ph(i)=0;%elseifthta1(i)30*pi/180&&thta1(i)41.8*pi/180;%ph=0;else%thta1(i)41.8*pi/180;ph(i)=angle(rs(i));endendsubplot(2,2,2)plot(thta1,ph,'b-+')set(gca,'YDir','reverse')legend('ph(rs)')title('反射光rp的相位变化','fontname','宋体','color','blue','fontsize',16);%第三个图%m=32;%布儒斯特角大概为30度fori=1:nrp=(n02*cos(thta1)-n01*cos(thta2))./(n02*cos(thta1)+n01*cos(thta2));ifthta1(i)(41.8*pi/180);%布儒斯特角ph(i)=-angle(rp(i));elseifthta1(i)33.7*pi/180&&thta1(i)41.8*pi/180;ph(i)=0;else%thta1(i)41.8*pi/180;ph(i)=pi;endendsubplot(2,2,3)plot(thta1,ph,'r-+')%set(gca,'YDir','reverse')legend('ph(rp)')title('反射光rp的相位变化','fontname','宋体','color','red','fontsize',16);光疏到光密clcclearn01=1;n02=1.52;thta1=0:pi/180:pi/2;%入射角的变化thta2=asin(sin(thta1).*n01./n02);%透射角随着入射角的变化rs=(n01.*cos(thta1)-n02.*cos(thta2))./(n01.*cos(thta1)+n02.*cos(thta2));rp=(sin(2*thta1)-sin(2*thta2))./(sin(2*thta1)+sin(2*thta2));ts=2.*n01.*cos(thta1)./(n01.*cos(thta1)+n02.*cos(thta2));%tp=2.*n01.*cos(thta1)./(n02.*cos(thta1)+n01.*cos(thta2));tp=2*cos(thta1).*sin(thta2)./((sin(thta1+thta2)).*(cos(thta1-thta2)));subplot(2,2,1)plot(thta1*360/(2*pi),rp,'g:*')holdonplot(thta1*360/(pi*2),rs,'g-*')holdonplot(thta1*360/(pi*2),ts,'b-*')holdonplot(thta1*360/(pi*2),tp,'b:*')holdonxlabel('入射角');ylabel('反射系数/透射系数');legend('rs','rp','ts','tp')title('反射光与透射光振幅的变化','fontname','宋体','color','red','fontsize',16);forthta1=0:pi/90:pi/2thta2=asin(n01.*sin(thta1)./n02);rs=-si