温度敏感性材料基本原理及其应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

温度敏感性材料基本原理及其应用温敏聚合物材料是一类引人注目的智能高分子材料,该材料水溶液随着温度的升高,溶解性下降,到某一温度时会发生相分离而浑浊,在降低到该温度以下时,它又变为澄清透明的溶液,这一相变温度称之为低临界溶解温度(Lowercriticalsolutiontemperature,LCST)。由于这一特性,使得温敏性聚合物在遮光体、温度控制以及室内装饰、分离膜及药物缓释等的应用中有极好的前景。1.1温度敏感型水凝胶由于温度信号在环境信号中广泛存在,也是最容易控制的信号之一,因此温度敏感型水凝胶在众多智能水凝胶中受到了广泛的关注[1,2]。温敏水凝胶是一种在某一温度下吸水(或溶剂)量有突变的凝胶,其结构中具有一定比例的亲水性和疏水性基团,温度的变化可以影响这些基团与水在分子内、分子间的相互作用,从而使水凝胶的网络结构发生变化,并产生体积相变。根据溶胀机理,温敏水凝胶分为两种[3],一种是在温度低于相转变温度时呈收缩状态,当温度高于相转变温度时则呈现出膨胀状态,被称为热胀温敏凝胶。常见的有聚丙烯酷胺,聚丙稀酸等。另一种则与之相反,当温度高于相转变温度时,凝胶处于收缩状态,被称为热缩温敏凝胶,典型的代表主要有聚N-异丙基丙稀酰胺,聚N,N-二乙基丙炼酰胺、聚N-乙基丙稀酰胺、聚N-正丙基丙烯酰胺等。其中,由于聚N-异丙基丙稀酰胺(PNIPAM)水凝胶相变温度(约32°C)在人的生理温度附近,且具有易于改性等特点,成为目前温敏性高分子材料的研究热点。1.2聚N-异丙基丙烯酰胺(PNIPAM)的介绍1.2.1结构及基本特性N-异丙基丙稀酷胺(NIPAM)是温敏型凝胶PNIPAM的最主要的组成部分。NIPAM单体分子式为C6H11N0,常温下为白色片状晶体,溶点为60℃分子量为113.18。它含有不饱和C=C双键,在水溶液中可以打开进行自由基聚合从而得到高分子量的聚合物。NIPAM及聚合物的结构式如图1所示。图1N-异丙基丙烯酰胺单体及其聚合物的结构式NIPAM单体聚合后得到聚N-异丙基丙稀醜胺(PNIPAM),聚合物大分子侧链上同时存在着亲水性的醜胺基和疏水性的异丙基两部分。一般而言,在常温下,亲水基团与水分子之间由于强烈的氧键作用力,使PNIPAM分子链溶于水。随着温度的升高,部分氢键作用力逐渐减弱,而PNIPAM高分子链中的疏水作用力不断增强[4]。当达到一定温度时,在疏水基团的相互作用下,高分子链互相聚集,发生体积相转变,并吸收热量;但当水溶液温度降低时,它又能够可逆地恢复到原来的状态而发生溶胀。这一相变温度称为低临界溶解温度(LowCriticalSolutionTemperature,LCST),也称为低相变温度或池点温度。PNIPAM不管以线型还是交联形式存在,都会在低临界溶解温度处体积收缩发生相转变,展现出温度敏感性能。在LCST附近,PNIPAM凝胶的其他性质如折射率、介电常数、表面能等也会发生突变,同时也具有可逆性[5]。1.2.2PNIPAM类温敏性高分子凝胶的温敏机理大多数研究者认为,PNIPAM具有温敏性能与其物质的结构有关。PNIPAM分子内具有一定比例的疏水性的异丙基和亲水性的酰胺基。在温度低于LCST时,PNIPAM高分子链中酰胺基与周围水分子间存在着强烈的氢键作用力(亲水作用力),使高分子链与溶剂具有较好的亲和性,此时PNIPAM高分子链呈现出伸展状态,即在LCST以下吸水溶胀。温度上升,当温度升高至LCST以上时,水分子与酰胺基之间的亲水作用力减弱,PNIPAM分子链中异丙基间的疏水作用力得以加强,当温度升高至LCST以上时,PNIPAM高分子链中的疏水作用逐渐加强并起主导作用,使得高分子链通过疏水作用互相聚集,形成疏水层,导致水分子排出发生相转变,此时高分子链由疏松的线团结构转变为紧密的胶粒状,产生温敏性。凝胶在宏观上表现为在相转变点附近,温度不到一摄氏度就可以引起数倍甚至数百倍的体积变化。图2温敏性相转变的示意图。图2温敏性水凝胶相转变示意图1.3PNIPAM类智能水凝胶的合成方法根据凝胶的性质、合成方法及用途等的不同,PNIPAM水凝胶可以分为两个大类:宏观水凝胶和微凝胶。1.3.1宏观水凝胶的合成(1)单体交联制备水凝胶单体交联聚合是一种在交联剂存在下,由一种或多种单体在水溶液中进行的交联聚合反应。比较常用的交联剂主要有水溶性的多官能团化合物如N,N、-亚甲基双丙稀酰胺(MBA)、二甲基丙稀酸二甘醇酯(DEGDMA)[7]及多价金属离子等。以合成PNIPAM水凝胶为例,过硫酸铵(APS)为引发剂在水溶液中引发NIPAM单体时产生硫酸根自由基(SO4-),使NIPAM分子获得自由基而活化,活化的NIPAM分子相互结合形成长链聚合物,在交联剂的作用下,交联得到三维网络结构的PNIAPM凝胶。Pong等[8]以NIPAM为单体,N,N-亚甲基双丙稀酰胺(MBA)或胱胺双丙稀肽胺(CBAm)为交联剂,在过硫酸钾(KPS)的引发作用下制备出了交联的PNIPAM水凝胶。Zhang等[9]以NIPAM、丙烯酰(B-环糊精)为交联剂,在混合溶剂水/1,4-二氧六环中,合成了具有非均相多孔结构的新型温敏水凝胶。由于水凝胶中的交联剂和未反应的引发剂均会对水凝胶的性质产生影响,因此这种方法也存在着一定的不足。科研工作者通过紫外线福照、电子射线、等离子体活性射线等方法来取代交联剂的作用从而引发单体聚合或福射交联,也能合成PNIPAM聚合物水凝胶。与传统的制备方法相比,操作简单、经济,利用辖射强度和福射时间可以有效的控制交联度的大小,由于反应过程中没有添加新的成分,不会在凝胶中产生残余组分,使得产品较为洁净[10,11]。ToshiakiMiura等人[12]在LCST以上将NIPAM和丙稀酸(AAc)的水溶液通过辐射引发聚合得到P(NIPAM-co-AAc)水凝胶。(2)接枝共聚制备水凝胶为了改善PNIPAM聚合物机械强度差的缺点,扩大应用范围,通常将PNIPAM接枝到具有一定力学强度的高分子材料及其衍生物上,如纤维素、淀粉等,可以合成力学性能优良的温敏材料。这类温敏材料的接枝高聚物分为两种类型:一类是将其它单体接枝到PNIPAM高分子链上,或直接将NIPAM接枝聚合到线性高分子上;另一类是将PNIPAM直接接枝到聚合物高分子基体上,从而使该高分子基体表面具有温敏特性。最常用的方法有化学偶联法和辖射技术法。Cho等[13]将NIPAM接枝到水溶性的壳聚糖上,制备出壳聚糖-g-聚(N-异丙基丙稀醜胺)温敏凝胶。同样,Liu等[14]将NIPAM接枝到甲基纤维素(MC)上合成了具有温敏性的MC-g-PNIPAM凝胶。徐立新等[15]以NIPAM和海藻酸钠(SA)为原料,采用单铈盐引发制备了接枝的聚(N-异丙基丙稀酰胺-g-海藻酸钠)(PNIPAM-g-SA)。Cai等[16]通过Y福射制备了具有温度/pH双重敏感性能的壳聚糖接枝聚N-异丙基丙稀酰胺(CS-g-PNIPAM)水凝胶,研究发现,随着反应中单体浓度和福射剂量的增加,水凝胶的接枝率和溶胀度也随之增加。(3)聚合物交联制备水凝胶互穿网络聚合物(IPN)是将两种或两种以上具有独立结构的聚合物的网络结构通过互穿缠结而形成的一类独特的聚合物。互穿网络水凝胶有两种类型:一种是半互穿聚合物网络(semi-IPN),其内部只有一种组分是交联的,而另一聚合物组分则以线型链的存在,例如在交联NIPAM时引入未交联的共聚单体可以制备出semi-IPN水凝胶。李志军等[17]以微波为福射源,对丙稀酸(AA)水溶液进行福照合成了聚丙稀酸(PAA)水凝胶,然后将脱水后的PAA水凝胶浸泡于含有交联剂的N-异丙基丙稀酰胺(NIPAM)水溶液中,加入引发剂过硫酸钾,进行第二次微波辐照反应,制备了聚丙稀酸/聚N-异丙基丙烯酸胺互穿网络水凝胶。张高奇[18]等以N-异丙基丙稀酰胺(NIPAM)和海藻酸钠(SA)为原料,制备了具有半互穿网络结构的水凝胶(SA/PNIPAMsemi-IPN)。另一种类型是两个组分均以交联网络形式互穿在一起,称为全互穿聚合物网络(full-IPN)。Carmen等[19]首先合成了PNIPAM/壳聚糖(CS)semi-IPN水凝胶,然后对壳聚糖进行交联,最终制备了PNIPAM/CSfull-IPN水凝胶。1.3.2PNIPAM微凝胶的合成方法对微凝胶含义的界定,科学家持有不同的意见。Funke在1988年,将尺寸在1-lOOnm的亚微米级范围的聚合物胶体粒子定义为微凝胶[20]。2000年,Pelton将颗粒直径在50µm~5µm的聚合物胶体粒子称为微凝胶[21]。制备微凝胶一般釆用以下几种方法:(1)乳液聚合法乳液聚合法是在乳化剂的作用下,通过机械搅拌或振荡,使单体在水中形成乳液而进行的聚合。常见的乳化剂为十二焼基硫酸钠(SDS),聚丙稀酸钠盐、氯化三甲基十八院基铵等。当反应过程中使用的引发剂很少时,乳化剂的存在为粒子表面提供了稳定电荷,从而有利于尺寸较小的凝胶微粒的形成。用此法合成PNIPAM微凝胶时,当聚合温度高于55℃时,才会有粒子生成。而当温度超过60℃时,温度对最终的粒径影响不大[22]。反应体系中乳化剂浓度越高,则其吸附在母体粒子上的机会也越多,从而提高母体粒子的稳定性。乳化剂的用量对微凝胶的粒径有较大影响,研究结果表明[23],反应体系中乳化剂浓度提高会使粒径变小,当达到一定浓度时,凝胶微粒的粒径将不再降低而趋于稳定。交联剂的用量对粒径也会有一定的影响。Varga等[25]以十二烷基硫酸钠(SDS)为乳化剂通过乳液聚合法制备了PNIPAM微凝胶,静/动态光散射(SLS/DLS)研究结果显示交联密度对PNIPAM微凝胶结构具有一定的影响。微凝胶胶粒的结构主要取决于交联度的大小。由于在乳液聚合过程中使用了乳化剂,实验后期处理过程中,粒子表面吸附的乳化剂难以除去,从而影响了微凝胶的应用。(2)无阜乳液聚合法(Surfactant-FreeEmulsionPolymerization,SFEP)无皂乳液聚合法是在反应过程中完全不加乳化剂或添加低于临界胶束浓度的微量乳化剂的条件下进行的均相自由基聚合,是目前最常见的用于合成PNIPAM微凝胶的合成方法。反应一般是在远高于LCST的聚合温度下进行,一般为60-70℃。反应温度的升高可以提高NIPAM链分散成胶质粒子的转化率,增加了PNIPAM链的相分离行为,最终导致胶态粒子的形成,所以这种方法又称为沉淀聚合或悬浮聚合[16,27,28]。采用无皂乳液法可以制备出单分散性良好,且表面形态规则的微凝胶粒子。例如以NIPAM为单体,MBA为交联剂,在过硫酸钾(KPS)的引发下通过无皂乳液聚合的方法可以制备PNIPAM微凝胶。在聚合反应过程中引发剂KPS可分解出含硫离子的自由基,覆盖在生成的粒子表面,起到稳定电荷的作用。反应体系中有过多的交联剂或者不纯的单体可能使悬浮液不稳定。另外,如果MBA含量过多,分散液的稳定性降低,得到的聚合溶液中有大的粒子甚至沉淀颗粒出现;反之如果交联剂MBA用量过少,则不利于粒子的形成,得到的聚合溶液是清澈透明的。刘维俊等[29]采用无皂乳液聚合法制备了核壳结构的聚(N异丙基丙稀酰胺)/壳聚糖(PNIPAM/CS)微凝胶,并研究了温度及pH对微凝胶性能的影响。结果显示,微凝胶有良好的温敏性,体积相转变温度在32-35℃之间,并且随着壳聚糖加入量增加向高温迁移;微凝胶的粒径随pH的增大逐渐减小,接近中性时最小,至碱性又逐渐增大,具有明显的pH敏感性。无皂乳液聚合与传统乳液聚合相比,因不含乳化剂,粒子表面较清洁,但是没有足够高的电荷来稳定高浓度的小粒子,所以通过无阜乳液聚合的方法很难制备出尺寸小的微凝胶,可以通过加入过硫酸盐(KPS或APS)等可离子化的引发剂或与离子型单体共聚等方法来增加胶粒的稳定性。(3)微乳液聚合法(MicroemulsionPolymerization)利用无皂乳液法制备的微凝胶长时间放置会产生粒子并聚,一些研究者采用微乳液聚合法合成PNIPAM微凝

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功