第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1所以公式类型为永真式(3)Pqrp∨qp∧r(p∨q)→(p∧r)000001001001010100011100100100101111110100111111所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)(p→(q∧r))(4)(p∧q)∨(p∧q)(p∨q)∧(p∧q)证明(2)(p→q)∧(p→r)(p∨q)∧(p∨r)p∨(q∧r))p→(q∧r)(4)(p∧q)∨(p∧q)(p∨(p∧q))∧(q∨(p∧q)(p∨p)∧(p∨q)∧(q∨p)∧(q∨q)1∧(p∨q)∧(p∧q)∧1(p∨q)∧(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(p→q)→(q∨p)(2)(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(p→q)→(qp)(pq)(qp)(pq)(qp)(pq)(qp)(qp)(pq)(pq)(pq)(pq)(pq)320mmm∑(0,2,3)主合取范式:(p→q)→(qp)(pq)(qp)(pq)(qp)(p(qp))(q(qp))1(pq)(pq)M1∏(1)(2)主合取范式为:(p→q)qr(pq)qr(pq)qr0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为0(3)主合取范式为:(p(qr))→(pqr)(p(qr))→(pqr)(p(qr))(pqr)(p(pqr))((qr))(pqr))111所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)