1习题一1.用列举法表示下列集合:(1)1到100之间的自然数的集合;(2)小于5的正整数集合;(3)偶自然数的集合;(4)奇整数的集合.解:(1)A{,,,,},123100(2)B{,,,}1234,(3){0,2,4,6,8,}C,(4)D{,,,,,,,}531135.2.用描述法表示下列集合:(1)偶整数的集合;(2)素数的集合;(3)自然数a的整数幂的集合.解:(1)}2{整除的整数被是能xxE(2)}11{数和自身整除的整且只能被是大于xxP(3)}{是整数是自然数,naaAn3.设},1,4,3},{{},4},3{,,2{aRaS请判断下面的写法正确与否:(1)Sa}{(2)Ra}{(3)Sa}}3{,4,{(4)Ra}4,3,1},{{(5)SR(6)Sa}{(7)Ra}{(8)R(9)ERa}}{{(10)S}{(11)R(12)}4},3{{解:(1)错;(2)对;(3)对;(4)错;(5)错;(6)对;(7)错;(8)对;(9)对;(10)错;(11)错;(12)对.4.设A、B和C为任意三个集合.以下说法是否正确?若正确则证明之,否则举反例说明.(1)若BA且CB,则CA;(2)若BA且CB,则CA;(3)若BA且CB,则CA;(4)若BA且CB,则CA解:(1)正确。因BC,所以,对任何xB均有xC,今AB,故AC。(2)错误。例如,令ABC{},{{},},{{},,}112123。(3)错误。例如,令ABC{},{,},{{,}}11212。(4)错误。例如,令ABC{},{{}}11。5.设SSP{是集合且SS.P是集合吗?请证明你的结论.解:假设P是集合。于是,(1)若PP,则由的定义,有PP;(2)若PP,则由的定义,有PP。总之,有PP当且仅当PP。此为矛盾。故P不是集合。6.设}3,4{},5,4,1{},3,1{},5,4,3,2,1{CBAE.试求下列集合:(1)BA;(2)CBA)(;2(3))(BA;(4)BA;(5)CBA)(;(6))(CBA;(7)CBA)(;(8))()(CBBA解:(1)AB{};3(2)(){,,}ABC125;(3)(AB){,,,}2345;(4)AB{,,,}2345;(5)();ABC(6)ABC(){};3(7)(){};ABC5(8)()(){,}ABBC14.7.设A、B和C为任意三个集合,以下说法是否正确?若正确则证明之,否则举反例说明.(1)若CABA,则CB;(2)若CABA,则CB;(3)若CABA,则CB;(4)若CBA,则BA或CA;(5)若ACB,则AB或AC解:(1)错误。例如,令ABC{},{,},{}1122;(2)错误。例如,令ABC{},{},{}123;(3)对。若BC,不妨设xBxC而。于是,(i)若xA,则xAB,但xAC;(ii)若xA,则xAB,但xAC。此与ABAC矛盾。故结论成立。(4)错。例如,令{1,2},{1},{2}ABC;(5)错。例如,令{2},{1,2},{2,3}ABC8.设A、B和C是任意三个集合,试证明:(1)BA当且仅当BA;(2)ABBA;(3))()(CBACBA;(4))()()(CABACBA;(5))()()(CABACBA解:(1)设AB。于是ABABABAA()()。反之,设AB。若AB,则不妨设xAxB而。于是xABxAB,而,从而AB。此为矛盾。故AB。(2)ABABABBABABA()()()()。(3)左式=()ABC=(()())ABBAC=(()())ABBAC=(()())((()()))ABBACABBAC=(()())((()()))ABBACABBAC=(((())(())))()()ABAABBCABCABC=((()()))(()())ABABCABCABC3=()()()()ABCABCABCABC右式=ABC()=ABCBC(()())=(()())((()()))ABCBCABCBC=((()())())((()()))ABACBCABCBC=(()())(()())((()()))ABBCACBCABCBC=(()()()()ABCABCABCABC=()()()()ABCABCABCABC=左式(4)证明:ABCABCCBABCCBABCABCABACABACACABABACACABABACACABABCABC()(()())(()())()())()()(()())(()())(()())(()())(()()(()())()())而因此,ABCABAC()()()(5)证明:取且于是,从而,但因此,AABACABCBCABCAABACAAABCABAC,,.,().()().()()().9.设}3,2{},2,1{BA,试确定以下集合:(1)BA}1{;(2)BA2;(3)2)(AB解:AB{}{,,,,,,,,,,,}1112113212213ABAAB2112113122123212213222223112113122123212213222223(){,,,,,,,,,,,,,,,,,,,,,,,}{,,,,,,,,,,,,,,,,,,,,,,,}BA{,,,,,,,}212231324()()(){,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,BABABA221212122213121322221222222312232312131223131,,,,,,,,,,,,,,,,,,,}3132322132223231323210.证明:若BBAA,则BA.解:因为xAiffxxAAiffxxBBiffxB,,,所以,当时,ABBBAB。11.证明:若CABA,且A,则CB.解:任取yB,因A,所以存在xA,使xyAB,,从而xyAC,。因此yC,即BC。同理可证CB。故BC。12.设yx,为任意元素,令}},{},{{,yxxyx试证明:,,uyx当且仅当yux,.解:设xyuv,,,即{{},{,}}{{},{,}}xxyuuv。(1)若{}{},{,}{,}xuxyuv,则有xuyv,;(2)若{}{,},{,}{}xuvxyu,则有xyuv。反之,设xuyv,,则由定义有xyuv,,。13.将三元有序组zyx,,定义为}},,{},,{},{{zyxyxx合适吗?为什么?解:不合适。例如,由定义,121112121112,,{{},{,},{,,}}{{},{,}}而112111112112,,{{},{,},{,,}}{{},{,}}但显然121112,,,,。