老师能不能麻烦您写一下,秩和线性相关,无关的关系,还有方程个数(维数)未知数个数之间的关系与方程线性相关无关的关系。我这一点学的很乱,也找不到哪些参考书目有总结的,自己好多也不知道。最好能解释清楚一下。标准全书,P302最上面6和7有什么区别吗?都是相乘一个等于N,一个≤N。还有就是当页的例题一,不能设PX=0解吧?否则就应该用上面的等式6了。我觉的只能用不等式7去解。通过定义,即转化为齐次线性方程组是否有非零解,利用判断非零解的充要条件可以得到,自己要试着学会推导。12,,,m是n维列向量,12iiiniaaa12,,,m是线性相关的存在不全为0的数1,,mkk,使得11220mmkkk齐次线性方程组11220mmxxx有非零解。111211212222120mmnnnmmaaaxaaaxaaax即0nmAX有非零解12,,,mArAm(系数矩阵的秩小于未知数的个数,即向量的个数)12,,,mrm同理自己可以推导线性无关的情况。学习线性代数必须学会自己总结,将相关知识点进行联系0AX标准全书0mnAX6是根据齐次线性方程组的解来确定,系数矩阵的秩rA,则基础解系中有nrA个向量,即齐次线性方程组有nrA个线性无关的解向量。70AB将其按列分块得到12,,,sB,则1212,,,,,,0,0,,0ssABAAAA即0iAB的每个列向量是0mnAX的解,但不一定是全部解,则rBnrA整理可得结论。对于这个结论要非常熟悉例题1因为0PQ所以3rPrQ当6t时,1rQ,2rP当6t时,2rQ,1rP因为P是非零三阶矩阵,则1rP所以1rP