空间向量第2课时

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

空间向量及其运算(2)教学目的:⒈了解空间向量基本定理及其推论;⒉理解空间向量的基底、基向量的概念.理解空间任一向量可用空间不共面的三个已知向量唯一线性表出奎屯王新敞新疆⒊学会用发展的眼光看问题,认识到事物都是在不断的发展、变化的,会用联系的观点看待事物.教学重点:向量的分解(空间向量基本定理及其推论)教学难点:空间作图.教学过程:一、复习引入:1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量奎屯王新敞新疆注:⑴空间的一个平移就是一个向量奎屯王新敞新疆⑵向量一般用有向线段表示奎屯王新敞新疆同向等长的有向线段表示同一或相等的向量奎屯王新敞新疆⑶空间的两个向量可用同一平面内的两条有向线段来表示奎屯王新敞新疆2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下baABOAOB;baOBOABA;)(RaOP运算律:⑴加法交换律:abba⑵加法结合律:)()(cbacba⑶数乘分配律:baba)(3.平行六面体:平行四边形ABCD平移向量a到DCBA的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD-DCBA奎屯王新敞新疆它的六个面都是平行四边形,每个面的边叫做平行六面体的棱奎屯王新敞新疆4奎屯王新敞新疆共线向量aC'B'A'D'DABC如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b记作ba//.当我们说向量a、b共线(或a//b)时,表示a、b的有向线段所在的直线可能是同一直线,也可能是平行直线.5.共线向量定理:空间任意两个向量a、b(b≠0),a//b的充要条件是存在实数λ,使a=λb.推论:如果l为经过已知点A且平行于已知非零向量a的直线,那么对于任意一点O,点P在直线l上的充要条件是存在实数t满足等式tOAOPa.其中向量a叫做直线l的方向向量.空间直线的向量参数表示式:tOAOPa或)(OAOBtOAOPOBtOAt)1(,中点公式.)(21OBOAOP6.向量与平面平行:已知平面和向量a,作OAa,如果直线OA平行于或在内,那么我们说向量a平行于平面,记作://a.通常我们把平行于同一平面的向量,叫做共面向量奎屯王新敞新疆说明:空间任意的两向量都是共面的奎屯王新敞新疆7.共面向量定理:如果两个向量,ab不共线,p与向量,ab共面的充要条件是存在实数,xy使pxayb奎屯王新敞新疆推论:空间一点P位于平面MAB内的充分必要条件是存在有序实数对,xy,使MPxMAyMB或对空间任一点O,有OPOMxMAyMB①上面①式叫做平面MAB的向量表达式奎屯王新敞新疆21.(本小题满分12分)已知方向向量为v=(1,3)的直线l过点(0,-23)和椭圆C:)0(12222babyax的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.(Ⅰ)求椭圆C的方程;aaA'pbaOPABM(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足463OMONcot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.ExOy二、讲解新课:1奎屯王新敞新疆空间向量基本定理:如果三个向量,,abc不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使pxaybzc奎屯王新敞新疆由此定理,若三向量,,abc不共面,则所有空间向量所组成的集合是{|,,,}ppxaybzcxRyRzR,这个集合可以看作由向量,,abc生成的,所以我们把{,,}abc叫做空间的一个基底,,,abc叫做基向量,可以知道,空间任意三个不共面的向量都可以构成空间的一个基底奎屯王新敞新疆推论:设,,,OABC是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数,,xyz,使OPxOAyOBzOC奎屯王新敞新疆2奎屯王新敞新疆空间向量的夹角及其表示:已知两非零向量,ab,在空间任取一点O,作,OAaOBb,则AOB叫做向量a与b的夹角,记作,ab;且规定0,ab,显POA'P'B'C'BAC然有,,abba;若,2ab,则称a与b互相垂直,记作:ab.3.向量的模:设OAa,则有向线段OA的长度叫做向量a的长度或模,记作:||a.4.向量的数量积:已知向量,ab,则||||cos,abab叫做,ab的数量积,记作ab,即ab||||cos,abab.已知向量ABa和轴l,e是l上与l同方向的单位向量,作点A在l上的射影A,作点B在l上的射影B,则AB叫做向量AB在轴l上或在e上的正射影.可以证明AB的长度||||cos,ABABaeae.5.空间向量数量积的性质:(1)||cos,aeaae.(2)0abab.(3)2||aaa.6.空间向量数量积运算律:(1)()()()ababab.(2)abba(交换律).(3)()abcabac(分配律).三、讲解范例:例奎屯王新敞新疆已知空间四边形OABC,其对角线OB,AC,M,N分别是对边OA,BC的中点,点G在线段MN上,且MG=2GN,用基底向量,,OAOBOC表示向量OG奎屯王新敞新疆四、小结:空间向量基本定理也成为空间向量分解定理,它与平面向量基本定理类似,区别仅在于基底中多了一个向量,从而分解结果中多了以“项”.证明的思路、步骤也基本相同.空间向量基本定理的推论意在用分解定理确定点的位置,它对于今后用向量方法解几何问题很有用,也为今后学习空间向量的直角坐标运算作准备.奎屯王新敞新疆五、作业:9B052

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功