糖代谢MetabolismofCarbohydrates第四章王晓华糖(carbohydrates)即碳水化合物,其化学本质为多羟醛或多羟酮类及其衍生物或多聚物。(一)糖的概念(二)糖的分类及其结构根据其水解产物的情况,糖主要可分为以下四大类。单糖(monosacchride)寡糖(oligosacchride)多糖(polysacchride)结合糖(glycoconjugate)葡萄糖(glucose)——已醛糖果糖(fructose)——已酮糖1.单糖不能再水解的糖。目录半乳糖(galactose)——已醛糖核糖(ribose)——戊醛糖目录2.寡糖常见的几种二糖有麦芽糖(maltose)葡萄糖—葡萄糖蔗糖(sucrose)葡萄糖—果糖乳糖(lactose)葡萄糖—半乳糖能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。3.多糖能水解生成多个分子单糖的糖。常见的多糖有淀粉(starch)糖原(glycogen)纤维素(cellulose)①淀粉是植物经光合作用形成,是植物中养分的储存形式淀粉颗粒目录a-1,4-糖苷键②糖原是动物体内葡萄糖的储存形式目录③纤维素作为植物的骨架目录4.结合糖糖与非糖物质的结合物。糖脂(glycolipid):是糖与脂类的结合物。糖蛋白(glycoprotein):是糖与蛋白质的结合物。常见的结合糖有第一节概述Introduction一、糖的生理功能1.氧化供能如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等物质的原料。3.作为机体组织细胞的组成成分这是糖的主要功能。2.提供合成体内其他物质的原料如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。二、糖的消化与吸收(一)糖的消化人类食物中的糖主要有植物淀粉、动物糖原以及麦芽糖、蔗糖、乳糖、葡萄糖等,其中以淀粉为主。食物中含有大量的纤维素。消化部位:主要在小肠,少量在口腔淀粉麦芽糖+麦芽三糖(40%)(25%)α-临界糊精+异麦芽糖(30%)(5%)葡萄糖唾液中的α-淀粉酶α-葡萄糖苷酶α-临界糊精酶消化过程肠粘膜上皮细胞刷状缘胃口腔肠腔胰液中的α-淀粉酶食物中含有的大量纤维素,因人体内无-糖苷酶而不能对其分解利用,但却具有刺激肠蠕动等作用,也是维持健康所必需。纤维素比重小,体积大,在胃肠中占据空间较大,使人有饱食感,有利于减肥。(二)糖的吸收1.吸收部位小肠上段2.吸收形式单糖ADP+PiATPGNa+K+小肠粘膜细胞肠腔门静脉3.吸收机制Na+依赖型葡萄糖转运体(Na+-dependentglucosetransporter,SGLT)刷状缘细胞内膜4.吸收途径小肠肠腔肠粘膜上皮细胞门静脉肝脏体循环SGLT各种组织细胞GLUTGLUT:葡萄糖转运体(glucosetransporter),已发现有5种葡萄糖转运体(GLUT1~5)。血糖三、糖代谢概况食物糖消化葡萄糖吸收(肝脏)葡萄糖肝糖原合成分解乳酸糖异生(血液)肌糖原葡萄糖合成有氧氧化CO2+H2O+ATP糖酵解乳酸+ATP血乳酸(肌肉)转变为其他物质(大量)(少量)第二节糖的无氧氧化Glycolysis一、糖酵解的反应过程第一阶段第二阶段*糖酵解(glycolysis)的定义*糖酵解分为两个阶段*糖酵解的反应部位:胞浆在缺氧情况下,葡萄糖生成乳酸(lactate)和少量能量的过程称之为糖酵解。由葡萄糖分解成丙酮酸(pyruvate),称之为糖酵解途径(glycolyticpathway)。由丙酮酸还原成乳酸。⑴葡萄糖磷酸化为6-磷酸葡萄糖(一)葡萄糖分解成丙酮酸哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为Ⅰ至Ⅳ型。肝细胞中存在的是Ⅳ型,称为葡萄糖激酶(glucokinase)。它的特点是:①对葡萄糖的亲和力很低,Km=10mmol/L其余Km=0.1mmol/L②受激素调控⑵6-磷酸葡萄糖转变为6-磷酸果糖⑶6-磷酸果糖转变为1,6-双磷酸果糖6-磷酸果糖激酶-1(6-phosphfructokinase-1)⑷磷酸己糖裂解成2分子磷酸丙糖⑸磷酸丙糖的同分异构化磷酸丙糖异构酶(phosphotrioseisomerase)⑹3-磷酸甘油醛氧化为1,3-二磷酸甘油酸3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphatedehydrogenase)⑺1,3-二磷酸甘油酸转变成3-磷酸甘油酸※在以上反应中,底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substratelevelphosphorylation)。磷酸甘油酸激酶(phosphoglyceratekinase)⑻3-磷酸甘油酸转变为2-磷酸甘油酸磷酸甘油酸变位酶(phosphoglyceratemutase)⑼2-磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化生成ATP(二)丙酮酸转变成乳酸丙酮酸乳酸反应中的NADH+H+来自于上述第6步反应中的3-磷酸甘油醛脱氢反应。糖酵解的代谢途径E2E1E3糖酵解小结⑴反应部位:胞浆⑵糖酵解是一个不需氧的产能过程⑶反应全过程中有三步不可逆的反应⑷产能的方式和数量方式:底物水平磷酸化净生成ATP数量:从G开始2×2-2=2ATP从Gn开始2×2-1=3ATP⑸终产物乳酸的去路释放入血,进入肝脏再进一步代谢。分解利用乳酸循环(糖异生)除葡萄糖外,其它己糖也可转变成磷酸己糖而进入酵解途径。二、糖酵解的调节关键酶调节方式(一)6-磷酸果糖激酶-1(PFK-1)*别构调节别构激活剂:AMP;ADP;F-1,6-2P;F-2,6-2P别构抑制剂:柠檬酸;ATP(高浓度)F-6-PF-1,6-2PATPADPPFK-1磷蛋白磷酸酶PKA目录(二)丙酮酸激酶1.别构调节别构抑制剂:ATP,丙氨酸别构激活剂:1,6-二磷酸果糖2.共价修饰调节丙酮酸激酶丙酮酸激酶ATPADPPi磷蛋白磷酸酶(无活性)(有活性)PKA:蛋白激酶A(proteinkinaseA)CaM:钙调蛋白(三)己糖激酶或葡萄糖激酶*6-磷酸葡萄糖可反馈抑制己糖激酶,但肝葡萄糖激酶不受其抑制。*长链脂肪酰CoA可别构抑制肝葡萄糖激酶。三、糖酵解的生理意义1.是机体在缺氧情况下获取能量的有效方式。2.是某些细胞在氧供应正常情况下的重要供能途径。①无线粒体的细胞,如:红细胞②代谢活跃的细胞,如:白细胞、骨髓细胞第三节糖的有氧氧化AerobicOxidationofCarbohydrate糖的有氧氧化(aerobicoxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。*部位:胞浆及线粒体*概念一、有氧氧化的反应过程第一阶段:糖酵解途径第二阶段:丙酮酸的氧化脱羧第三阶段:三羧酸循环G(Gn)第四阶段:氧化磷酸化丙酮酸乙酰CoAH2O[O]ATPADPTAC循环胞浆线粒体(一)丙酮酸的氧化脱羧丙酮酸进入线粒体,氧化脱羧为乙酰CoA(acetylCoA)。总反应式:丙酮酸脱氢酶复合体的组成酶E1:丙酮酸脱氢酶E2:二氢硫辛酰胺转乙酰酶E3:二氢硫辛酰胺脱氢酶丙酮酸脱氢酶复合体催化的反应过程1.丙酮酸脱羧形成羟乙基-TPP。2.由二氢硫辛酰胺转乙酰酶(E2)催化形成乙酰硫辛酰胺-E2。3.二氢硫辛酰胺转乙酰酶(E2)催化生成乙酰CoA,同时使硫辛酰胺上的二硫键还原为2个巯基。4.二氢硫辛酰胺脱氢酶(E3)使还原的二氢硫辛酰胺脱氢,同时将氢传递给FAD。5.在二氢硫辛酰胺脱氢酶(E3)催化下,将FADH2上的H转移给NAD+,形成NADH+H+。CO2CoASHNAD+NADH+H+5.NADH+H+的生成-羟乙基-TPP的生成2.乙酰硫辛酰胺的生成3.乙酰CoA的生成4.硫辛酰胺的生成目录三羧酸循环(TricarboxylicacidCycle,TAC)也称为柠檬酸循环,这是因为循环反应中的第一个中间产物是一个含三个羧基的柠檬酸。由Krebs正式提出了三羧酸循环的学说,故此循环又称为Krebs循环。所有的反应均在线粒体中进行。(二)三羧酸循环*概述*反应部位NADH+H+NAD+NAD+NADH+H+GTPGDP+PiFADFADH2NADH+H+NAD+⑧①②③④⑤⑥⑦②①柠檬酸合酶②顺乌头酸梅③异柠檬酸脱氢酶④α-酮戊二酸脱氢酶复合体⑤琥珀酰CoA合成酶⑥琥珀酸脱氢酶⑦延胡索酸酶⑧苹果酸脱氢酶目录小结①三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。②TAC过程的反应部位是线粒体。③三羧酸循环的要点经过一次三羧酸循环,消耗一分子乙酰CoA,经四次脱氢,二次脱羧,一次底物水平磷酸化。生成1分子FADH2,3分子NADH+H+,2分子CO2,1分子GTP。关键酶有:柠檬酸合酶异柠檬酸脱氢酶α-酮戊二酸脱氢酶复合体④整个循环反应为不可逆反应⑤三羧酸循环的中间产物三羧酸循环中间产物起催化剂的作用,本身无量的变化,不可能通过三羧酸循环直接从乙酰CoA合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三羧酸循环中被氧化为CO2及H2O。表面上看来,三羧酸循环运转必不可少的草酰乙酸在三羧酸循环中是不会消耗的,它可被反复利用。例如:Ⅰ机体内各种物质代谢之间是彼此联系、相互配合的,TAC中的某些中间代谢物能够转变合成其他物质,借以沟通糖和其他物质代谢之间的联系。Ⅱ机体糖供不足时,可能引起TAC运转障碍,这时苹果酸、草酰乙酸可脱羧生成丙酮酸,再进一步生成乙酰CoA进入TAC氧化分解。*所以,草酰乙酸必须不断被更新补充。草酰乙酸其来源如下:二、三羧酸循环的生理意义是三大营养物质氧化分解的共同途径;是三大营养物质代谢联系的枢纽;为其它物质代谢提供小分子前体;为呼吸链提供H++e。H++e进入呼吸链彻底氧化生成H2O的同时ADP偶联磷酸化生成ATP。三、有氧氧化生成的ATP葡萄糖有氧氧化生成的ATP2.52.52.52.51.530或322.52X2.52X1.5有氧氧化的生理意义糖的有氧氧化是机体产能最主要的途径。它不仅产能效率高,而且由于产生的能量逐步分次释放,相当一部分形成ATP,所以能量的利用率也高。三、有氧氧化的调节关键酶①酵解途径:己糖激酶②丙酮酸的氧化脱羧:丙酮酸脱氢酶复合体③三羧酸循环:6-磷酸果糖激酶-1丙酮酸激酶异柠檬酸脱氢酶α-酮戊二酸脱氢酶复合体柠檬酸合酶1.丙酮酸脱氢酶复合体⑴别构调节⑵共价修饰调节目录异柠檬酸脱氢酶柠檬酸合酶α-酮戊二酸脱氢酶复合体柠檬酸Ca2+①ATP、ADP的影响②产物堆积引起抑制③循环中后续反应中间产物别位反馈抑制前面反应中的酶④其他,如Ca2+可激活许多酶2.三羧酸循环的调节有氧氧化的调节特点⑴有氧氧化的调节通过对其关键酶的调节实现。⑵ATP/ADP或ATP/AMP比值全程调节。该比值升高,所有关键酶均被抑制。⑶氧化磷酸化速率影响三羧酸循环。前者速率降低,则后者速率也减慢。⑷三羧酸循环与酵解途径互相协调。三羧酸循环需要多少乙酰CoA,则酵解途径相应产生多少丙酮酸以生成乙酰CoA。体内ATP浓度是AMP的50倍,经上述反应后,ATP/AMP变动比ATP变动大,有信号放大作用,从而发挥有效的调节作用。ATP/ADP或ATP/AMP比值升高抑制有氧氧化,降低则促进有氧氧化。ATP/AMP效果更显著。四、巴斯德效应*概念巴斯德效应(Pastuereffect)指有氧氧化抑制糖酵解的现象。第四节磷酸戊糖途径PentosePhosphatePathway*概念磷酸戊糖途径是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。*细胞定位:胞液第一阶段:氧化反应生成磷酸戊糖,NADPH+H+及CO2一、磷酸戊糖途径的反应过程*反应过程可分为二个阶段第二阶段则是非氧化反应包括一系列基团转移。6-磷酸葡萄糖脱氢酶6-磷酸葡萄糖酸脱氢酶1.磷酸戊糖生成催化第一步脱氢反应的6-磷酸葡萄糖脱氢酶是此代谢途径的关键酶。两次脱氢脱下的氢均由