深度学习的研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

深度学习的研究姓名:21321班级:231321学号:564564学院:机械工程学院深度学习的发展历史在解释深度学习之前,我们需要了解什么是机器学习。机器学习是人工智能的一个分支,而在很多时候,几乎成为人工智能的代名词。简单来说,机器学习就是通过算法,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测。从1980年代末期以来,机器学习的发展大致经历了两次浪潮:浅层学习(ShallowLearning)和深度学习(DeepLearning)。需要指出是,机器学习历史阶段的划分是一个仁者见仁,智者见智的事情,从不同的维度来看会得到不同的结论。这里我们是从机器学习模型的层次结构来看的。第一次浪潮:浅层学习1980年代末期,用于人工神经网络的反向传播算法(也叫BackPropagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习出统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显示出优越性。这个时候的人工神经网络,虽然也被称作多层感知机(Multi-layerPerceptron),但实际上是一种只含有一层隐层节点的浅层模型。90年代,各种各样的浅层机器学习模型相继被提出,比如支撑向量机(SVM,SupportVectorMachines)、Boosting、最大熵方法(例如LR,LogisticRegression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型在无论是理论分析还是应用都获得了巨大的成功。相比较之下,由于理论分析的难度,加上训练方法需要很多经验和技巧,所以这个时期浅层人工神经网络反而相对较为沉寂。2000年以来互联网的高速发展,对大数据的智能化分析和预测提出了巨大需求,浅层学习模型在互联网应用上获得了巨大成功。最成功的应用包括搜索广告系统(比如Google的AdWords、百度的凤巢系统)的广告点击率CTR预估、网页搜索排序(例如Yahoo!和微软的搜索引擎)、垃圾邮件过滤系统、基于内容的推荐系统等。第二次浪潮:深度学习2006年,加拿大多伦多大学教授、机器学习领域泰斗——GeoffreyHinton和他的学生RuslanSalakhutdinov在顶尖学术刊物《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。这篇文章有两个主要的信息:1.很多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2.深度神经网络在训练上的难度,可以通过“逐层初始化”(Layer-wisePre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。自2006年以来,深度学习在学术界持续升温。斯坦福大学、纽约大学、加拿大蒙特利尔大学等成为研究深度学习的重镇。2010年,美国国防部DARPA计划首次资助深度学习项目,参与方有斯坦福大学、纽约大学和NEC美国研究院。支持深度学习的一个重要依据,就是脑神经系统的确具有丰富的层次结构。一个最著名的例子就是Hubel-Wiesel模型,由于揭示了视觉神经的机理而曾获得诺贝尔医学与生理学奖。除了仿生学的角度,目前深度学习的理论研究还基本处于起步阶段,但在应用领域已显现出巨大能量。2011年以来,微软研究院和Google的语音识别研究人员先后采用DNN技术降低语音识别错误率20%~30%,是语音识别领域十多年来最大的突破性进展。2012年,DNN技术在图像识别领域取得惊人的效果,在ImageNet评测上将错误率从26%降低到15%。在这一年,DNN还被应用于制药公司的DrugeActivity预测问题,并获得世界最好成绩,这一重要成果被《纽约时报》报道。正如文章开头所描述的,今天Google、微软、百度等知名的拥有大数据的高科技公司争相投入资源,占领深度学习的技术制高点,正是因为它们都看到了在大数据时代,更加复杂且更加强大的深度模型能深刻揭示海量数据里所承载的复杂而丰富的信息,并对未来或未知事件做更精准的预测。大数据与深度学习在工业界一直有个很流行的观点:在大数据条件下,简单的机器学习模型会比复杂模型更加有效。例如,在很多的大数据应用中,最简单的线性模型得到大量使用。而最近深度学习的惊人进展,促使我们也许到了要重新思考这个观点的时候。简而言之,在大数据情况下,也许只有比较复杂的模型,或者说表达能力强的模型,才能充分发掘海量数据中蕴藏的丰富信息。运用更强大的深度模型,也许我们能从大数据中发掘出更多有价值的信息和知识。为了理解为什么大数据需要深度模型,先举一个例子。语音识别已经是一个大数据的机器学习问题,在其声学建模部分,通常面临的是十亿到千亿级别的训练样本。在Google的一个语音识别实验中,发现训练后的DNN对训练样本和测试样本的预测误差基本相当。这是非常违反常识的,因为通常模型在训练样本上的预测误差会显著小于测试样本。因此,只有一个解释,就是由于大数据里含有丰富的信息维度,即便是DNN这样的高容量复杂模型也是处于欠拟合的状态,更不必说传统的GMM声学模型了。所以从这个例子中我们看出,大数据需要深度学习。浅层模型有一个重要特点,就是假设靠人工经验来抽取样本的特征,而强调模型主要是负责分类或预测。在模型的运用不出差错的前提下(如假设互联网公司聘请的是机器学习的专家),特征的好坏就成为整个系统性能的瓶颈。因此,通常一个开发团队中更多的人力是投入到发掘更好的特征上去的。要发现一个好的特征,就要求开发人员对待解决的问题要有很深入的理解。而达到这个程度,往往需要反复地摸索,甚至是数年磨一剑。因此,人工设计样本特征,不是一个可扩展的途径。深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。所以“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1.强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2.明确突出了特征学习的重要性,也就是说,同过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能刻画数据丰富的内在信息。所以,在未来的几年里,我们将看到越来越多的例子:深度模型应用于大数据,而不是浅层的线性模型。深度学习的方法深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。采用分层结构,系统包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logistic回归模型;采用逐层训练机制。采用该机制的原因在于如果采用BP机制,对于一个deepnetwork(7层以上),残差传播到最前面的层将变得很小,出现所谓的gradientdiffusion(梯度扩散)。第一步:采用自下而上的无监督学习1)逐层构建单层神经元。2)每层采用wake-sleep算法进行调优。每次仅调整一层,逐层调整。这个过程可以看作是一个featurelearning的过程,是和传统神经网络区别最大的部分。wake-sleep算法:1)wake阶段:认知过程,通过下层的输入特征(Input)和向上的认知(Encoder)权重产生每一层的抽象表示(Code),再通过当前的生成(Decoder)权重产生一个重建信息(Reconstruction),计算输入特征和重建信息残差,使用梯度下降修改层间的下行生成(Decoder)权重。也就是“如果现实跟我想象的不一样,改变我的生成权重使得我想象的东西变得与现实一样”。2)sleep阶段:生成过程,通过上层概念(Code)和向下的生成(Decoder)权重,生成下层的状态,再利用认知(Encoder)权重产生一个抽象景象。利用初始上层概念和新建抽象景象的残差,利用梯度下降修改层间向上的认知(Encoder)权重。也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。第二步:自顶向下的监督学习这一步是在第一步学习获得各层参数进的基础上,在最顶的编码层添加一个分类器(例如罗杰斯特回归、SVM等),而后通过带标签数据的监督学习,利用梯度下降法去微调整个网络参数。深度学习的第一步实质上是一个网络参数初始化过程。区别于传统神经网络初值随机初始化,深度学习模型是通过无监督学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果。DeepLearning的常用方法:自动编码器(AutoEncoder)、稀疏自动编码器(SparseAutoEncoder)、降噪自动编码器(DenoisingAutoEncoders)方法介绍:a).自动编码器(AutoEncoder)最简单的一种方法是利用人工神经网络的特点,人工神经网络(ANN)本身就是具有层次结构的系统,如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重,自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征,在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特征可以大大提高精确度,甚至在分类问题中比目前最好的分类算法效果还要好!这种方法称为AutoEncoder。当然,我们还可以继续加上一些约束条件得到新的DeepLearning方法,如如果在AutoEncoder的基础上加上L1的Regularity限制(L1主要是约束每一层中的节点中大部分都要为0,只有少数不为0,这就是Sparse名字的来源),我们就可以得到SparseAutoEncoder方法。b).稀疏自动编码器(SparseCoding)如果我们把输出必须和输入相等的限制放松,同时利用线性代数中基的概念,即O=w1*B1+W2*B2+....+Wn*Bn,Bi是基,Wi是系数,我们可以得到这样一个优化问题:Min|I-O|通过求解这个最优化式子,我们可以求得系数Wi和基Bi,这些系数和基础就是输入的另外一种近似表达,因此,它们可以特征来表达输入I,这个过程也是自动学习得到的。如果我们在上述式子上加上L1的Regularity限制,得到:Min|I-O|+u*(|W1|+|W2|+...+|Wn|)这种方法被称为SparseCoding。当然,还有其它的一些DeepLearning方法,在这里就不叙述了。总之,DeepLearning能够自动地学习出数据的另外一种表示方法,这种表示可以作为特征加入原有问题的特征集合中,从而可以提高学习方法的效果,是目前业界的研究热点。已有研究由于深度学习能够很好地解决一些复杂问题,近年来许多研究人员对其进行了深入研究。下面分别从初始化方法、网络层数和激活函数的选择、模型结构、学习算法和实际应用这四个方面对近几年深度学习研究的新进展进行介绍。1.初始化方法、网络层数和激活函数的选择研究人员试图搞清网络初始的设定与学习结果之间的关系。Erhan等人在轨迹可视化研究中指出即使从相近的值开始训练深度结构神经网络,不同的初始值也会学习到不同的局部极值,同时发现用无监督预训练初始化模型的参数学习得到的极值与随机初始化学习得到的极值差异比较大,用无监督预训练初始化模型的参数学习得到的模型具有更好的泛化误差。Bengio与Krueger等人指出用特定的方法设定训练样例的初始分布和排列顺序可以产生更好的训练结果,用特定的方法初始化参数,使其与均匀采样得到的参数不同,会对

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功