第十知识块统计、统计案例第1讲随机抽样一、选择题1.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为()A.15,10,20B.10,5,30C.15,15,15D.15,5,25解析:高一年级抽取的人数为:300900×45=15,高二年级抽取的人数为:200900×45=10,高三年级抽取的人数为:400900×45=20.答案:A2.下列抽样问题中最适合用系统抽样法抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解某些情况解析:A项,总体容量较小,样本容量也较小,可采用抽签法.B项,总体中的个体有明显的层次,不适宜用系统抽样法.C项,总体容量较大,样本容量也较大,可用系统抽样法.D项,总体容量较大,样本容量较小,可用随机数表法.答案:C3.(2009·陕西卷)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工抽取人数为()A.9B.18C.27D.36解析:设老年职工人数为x人,中年职工人数为2x,所以160+x+2x=430,得x=90.由题意老年职工抽取人数为90×32160=18(人).答案:B4.(2010·安徽合肥质检)某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为()A.50B.60C.70D.80解析:由分层抽样方法得:33+4+7×n=15,解得n=70.答案:C二、填空题5.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________人.解析:抽样比为25200=18,由于超过45岁的共有80人,因此应抽取80×18=10(人).答案:106.(2009·广东卷)某单位200名职工的年龄分布情况如右图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.解析:∵间距为5,第5组抽22号,∴第8组抽出的号码为22+5(8-5)=37,40岁以下职工人数为100,应抽取40200×100=20(人).答案:37207.(2009·辽宁卷)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为________h.解析:利用分层抽样可知从3个分厂抽出的100个电子产品中,每个厂中的产品个数比也为1∶2∶1,故分别有25,50,25个.再由三个厂算出的平均值可得100件产品的总的平均寿命为980×25+1020×50+1032×25100=1013(h).答案:1013三、解答题8.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台入样,问此样本若采用简单随机抽样方法将如何获得?解:方法一:抽签法,首先,把机器都编上号码1,2,3,…,112,则把112个形状、大小相同的号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取10次,就得到一个容量为10的样本.方法二:第一步,将原来的编号调整为001,002,003,…,112.第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如:选第9行第7个数“3”,向右读.第三步,从“3”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.9.某煤矿有采煤工人400人,运输工人302人,管理和服务人员250人.要从中抽取190人组成职工代表参加讨论奖金分配方案,试确定用何种方法抽取,三种类型的职工各抽多少?解:由于奖金分配涉及到各种人的利益不同,所以应采用分层抽样方法.因为总体人数400+302+250=952(人),952190=5余2,应剔除2人,而4005=80(人),302-25=60(人),2505=50(人),所以采煤工、运输工、管理和服务人员分别抽取80人、60人、50人.10.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.解:总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n36,抽取工程师n36×6=n6(人),抽取技术人员n36×12=n3(人),抽取技工n36×18=n2(人).所以n应是6的倍数,36的约数即n=6,12,18,36.当样本容量为(n+1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为35n+1,因为35n+1必须是整数,所以n只能取6,即样本容量为6.1.(2010·创新题)某企业三月中旬生产A、B、C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别ABC产品数量(件)1300样本容量130由于不小心,表格中A、C产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是________件.解析:设样本的总容量为x,则x3000×1300=130,∴x=300.∴A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,则y+y+10=170,∴y=80.∴C产品的数量为3000300×80=800.答案:8002.(★★★★)一个总体中有100个个体,随机编号0,1,2,…,99,依从小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.解析:由题意知:m=8,k=8,则m+k=16,也就是第8组的个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案:76