第17讲算法案例

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共10页普通高中课程标准实验教科书—数学[人教版]老苗汤老苗汤泡脚老苗汤官网高三新数学第一轮复习教案(讲座17)—算法案例一.课标要求:通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。二.命题走向算法是高中数学新课程中的新增内容,本讲的重点是几种重要的算法案例思想,复习时重算法的思想轻算法和程序的构造。预测2007年高考队本讲的考察是:以选择题或填空题的形式出现,分值在5分左右,考察的热点是算法实例和传统数学知识的结合题目。三.要点精讲1.求最大公约数(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来。(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数。(3)辗转相除法辗转相除法求两个数的最大公约数,其算法可以描述如下:①输入两个正整数m和n;②求余数r:计算m除以n,将所得余数存放到变量r中;③更新被除数和余数:m=n,n=r;④判断余数r是否为0。若余数为0,则输出结果;否则转向第②步继续循环执行。如此循环,直到得到结果为止。(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术。在《九章算术》中记载了更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。步骤:Ⅰ.任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。Ⅱ.以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。第2页共10页2.秦九韶算法秦九韶算法的一般规则:秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题。用秦九韶算法求一般多项式f(x)=anxn+an-1xn-1+….+a1x+a0当x=x0时的函数值,可把n次多项式的求值问题转化成求n个一次多项式的值的问题,即求v0=anv1=anx+an-1v2=v1x+an-2v3=v2x+an-3……..vn=vn-1x+a0观察秦九韶算法的数学模型,计算vk时要用到vk-1的值,若令v0=an。我们可以得到下面的递推公式:v0=anvk=vk-1+an-k(k=1,2,…n)这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现。3.排序排序的算法很多,课本主要介绍里两种排序方法:直接插入排序和冒泡排序(1)直接插入排序在日常生活中,经常碰到这样一类排序问题:把新的数据插入到已经排好顺序的数据列中。例如:一组从小到大排好顺序的数据列{1,3,5,7,9,11,13},通常称之为有序列,我们用序号1,2,3,……表示数据的位置,欲把一个新的数据8插入到上述序列中。完成这个工作要考虑两个问题:(1)确定数据“8”在原有序列中应该占有的位置序号。数据“8”所处的位置应满足小于或等于原有序列右边所有的数据,大于其左边位置上所有的数据。(2)将这个位置空出来,将数据“8”插进去。对于一列无序的数据列,例如:{49,38,65,97,76,13,27,49},如何使用这种方法进行排序呢?基本思想很简单,即反复使用上述方法排序,由序列的长度不断增加,一直到完成整个无序列就有序了。首先,{49}是有序列,我们将38插入到有序列{49}中,得到两个数据的有序列:{38,49},然后,将第三个数据65插入到上述序列中,得到有序列:{38,49,65}…………按照这种方法,直到将最后一个数据65插入到上述有序列中,得到{13,27,38,49,49,65,76,97}这样,就完成了整个数据列的排序工作。注意到无序列“插入排序算法”成为了解决这类问题的平台。第3页共10页(2)冒泡法排序所谓冒泡法排序,形象地说,就是将一组数据按照从小到大的顺序排列时,小的数据视为质量轻的,大的数据视为质量沉的。一个小的数据就好比水中的气泡,往上移动,一个较大的数据就好比石头,往下移动。显然最终会沉到水底,最轻的会浮到顶,反复进行,直到数据列排成为有序列。以上过程反映了这种排序方法的基本思路。我们先对一组数据进行分析。设待排序的数据为:{49,38,65,97,76,13,27,49}排序的具体操作步骤如下:1.将第1个数与右边相邻的数38进行比较,因为3849,49应下沉,即向右移动,所以交换他们的位置,得到新的数据列:{38,49,65,97,76,13,27,49}2.将新数据列中的第2个数49与右边相邻的数65进行比较,因为6549,所以顺序不变,得到新的数据列:{38,49,65,97,76,13,27,49}3.将新数据列中的第3个数65与右边相邻的数97进行比较,因为9765,所以顺序不变,得到新的数据列:{38,49,65,97,76,13,27,49}4.将新数据列中的第4个数97与右边相邻的数76进行比较,因为7697,97应下沉,所以顺序不变,得到新的数据列:{38,49,65,76,97,13,27,49}5.将新数据列中的第5个数97与右边相邻的数13进行比较,因为1397,97应下沉,所以顺序改变,得到新的数据列:{38,49,65,76,13,97,27,49}6.将新数据列中的第6个数97与右边相邻的数27进行比较,因为2797,97应下沉,所以顺序改变,得到新的数据列:{38,49,65,76,13,97,27,49}7.将新数据列中的第7个数97与右边相邻的数49进行比较,因为4997,97应下沉,所以顺序改变,得到新的数据列:{38,49,65,76,13,97,49,27}我们把上述过程称为一趟排序。其基本特征是最大的数据沉到底,即排在最左边位置上的数据是数组中最大的数据。反复执行上面的步骤,就能完成排序工作,排序过程不会超过7趟。这种排序的方法称为冒泡排序。上面的分析具有一般性,如果数据列有n个数据组成,至多经过n-1趟排序,就能完成整个排序过程。4.进位制(1)概念进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0—9进行记数。对于任何一个数,我们可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为:第4页共10页110()110...(0,0,...,,)nnknnaaaaakaaak,而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数。(2)进位制间的转换关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其它进制之间的转换。这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出。非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:0111011.........)(.....akakakakaaaannnnnn第一步:从左到右依次取出k进制数)(.....011kaaaann各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即00111,,,.........,kakakakannnn;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数。十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”。非十进制之间的转换一个自然的想法是利用十进制作为桥梁。教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先有二进制数转化为十进制数,再由十进制数转化成为16进制数。四.典例解析题型1:求最大公约数例1.(1)用辗转相除法求123和48的最大公约数?(2)用更相减损来求80和36的最大公约数?解析:(1)辗转相除法求最大公约数的过程如下:(建立带余除式)123=2×48+2748=1×27+2127=1×21+621=3×6+36=2×3+0最后6能被3整除,得123和48的最大公约数为3。(2)分析:我们将80作为大数,36作为小数,执行更相减损术来求两数的最大公约数。执行结束的准则是减数和差相等。第5页共10页更相减损术:因为80和36都是偶数,要去公因数2。80÷2=40,36÷2=18;40和18都是偶数,要去公因数2。40÷2=20,18÷2=9下面来求20与9的最大公约数,20-9=1111-9=29-2=77-2=55-2=33-2=12-1=1可得80和36的最大公约数为22×1=4。点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等。例2.设计一个算法,求出840与1764的最大公因数。解析:我们已经学习过了对自然数的素因数分解的方法,下面的算法就是在此基础上设计的。解题思路如下:首先对两个数进行素因数分解:840=23×3×5×7,1764=22×32×72,其次,确定两个数的公共素因数:2,3,7。接着确定公共素因数的指数:对于公共素因数2,840中为23,1764中为22,应取较少的一个22,同理可得下面的因数为3和7。算法步骤:第一步:将840进行素数分解23×3×5×7;第二步:将1764进行素数分解22×32×72;第三步:确定它们的公共素因数:2,3,7;第四步:确定公共素因数2,3,7的指数分别是:2,1,1;第五步:最大公因数为22×31×71=84。点评:质数是除1以外只能被1和本身整除的正整数,它应该是无限多个,但是目前没有一个规律来确定所有的质数。题型2:秦九韶算法例3.(2005北京,14)已知n次多项式1011()nnnnnPxaxaxaxa,如果在一种算法中,计算0kx(k=2,3,4,…,n)的值需要k-1次乘法,计算30()Px的第6页共10页值共需要9次运算(6次乘法,3次加法),那么计算100()Px的值共需要次运算。下面给出一种减少运算次数的算法:0011(),()()kkkPxaPxxPxa(k=0,1,2,…,n-1).利用该算法,计算30()Px的值共需要6次运算,计算100()Px的值共需要次运算。答案:65;20。点评:秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题。直接法乘法运算的次数最多可到达2)1(nn,加法最多n次。秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次。例4.已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值。解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7计算的过程可以列表表示为:多项式x系数2-5-43-67运算运算所得的值10251055402670+变形后x的系数25211085342677*5最后的系数2677即为所求的值。算法过程:v0=2v1=2×5-5=5v2=5×5-4=21v3=21×5+3=108v4=108×5-6=534v5=534×5+7=2677点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算。题型三:排序例4.试用两种排序方法将以下8个数:7,1,3,12,8,4,9,10。按照从大到小的顺序进行排序

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功