第1页共10页内容提要:一、行列式的定义1、2阶和3阶行列式2112221122211211aaaaaaaaD312312322113332211333231232221131211aaaaaaaaaaaaaaaaaa322311332112312213aaaaaaaaa2、排列与逆序定义由n,,3,2,1组成的一个有序数组称为一个n阶排列.3、n阶行列式定义定义称nnnpppnppppppnnnnnnaaaaaaaaaaaaD21212121)(212222111211)1()det(ija为n阶行列式,记作D或nD.也记作)det(ija.4、三角形行列式:主对角线元素的乘积。二、行列式的性质性质1DD.性质2互换行列式的某两行(或列),行列式仅变符号.推论若行列式中某两行(或列)相同,则行列式为零.性质3行列式某行(列)的各元素乘以k,等于用数k乘以行列式.推论行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘.推论若行列式的某两行(或列)的对应成元素成比例,则行列式为零.第2页共10页性质4nnnniniinnnnniniinnnnnininiiiinaaaaaaaaaaaaaaaaaa21211121121211121121221111211性质5将行列式的某行(或列)各元素乘以数k加到另一行(或列)的对应元素上,行列式的值不变.三、行列式的展开定理定义在nD中划掉ija所在的行和列(即第i行和第j列),余下的元素按原来的相对位置构成一个(1n)阶行列式,称为ija的余子式,记作ijM.ijjiijMA)1(——ija的代数余子式定理1ininiiiiAaAaAaD2211(ni,,2,1)按第i行展开或niniiiiiAaAaAaD2211(ni,,2,1)按第i列展开推论02211jninjijiAaAaAa(ji)或02211njnijijiAaAaAa(ji)四、Cramer规则nnnnnnnnnnbxaxaxabxaxaxabxaxaxa22112222212111212111(1)定理当0D时,方程组(1)有唯一解DDx11,DDx22,……,DDxnn.第3页共10页推论齐次线性方程组000221122221211212111nnnnnnnnnxaxaxaxaxaxaxaxaxa(01x,02x,……,0nx显然是方程组的解,称为零解)1)0D仅有零解.2)有非零解0D.第4页共10页《线性代数》单元自测题答案第一章行列式一、填空题:1.设jiaaaaa54435231是五阶行列式中带有负号的项,则i=________;j=_________。分析2,1ji或者1,2ji。当2,1ji时,5244352311524435231145244352311)13542()1()1(aaaaaaaaaaaaaaa。当1,2ji时,5144352312514435231255144352312)23541()1()1(aaaaaaaaaaaaaaa。2.在四阶行列式中,带正号且包含因子23a和31a的项为_______。分析同时包含23a和31a的项有4431231244312312244312312)2314()1()1(aaaaaaaaaaaa。和4231231442312314542312314)4312()1()1(aaaaaaaaaaaa。作业:第6页,习题1.1,2.写出四阶行列式44434241343332312423222114131211aaaaaaaaaaaaaaaa中同时包含12a和31a的项。解4431231244312312244312312)2314()1()1(aaaaaaaaaaaa和4331241243312412343312412)2413()1()1(aaaaaaaaaaaa。3.在五阶行列式中,项2543543112aaaaa的符号应取__________。分析54433125122543543112aaaaaaaaaa,所以,1)1()1(4)25134(。第5页共10页4.已知xxxxxxf42124011123313)(,则)(xf中4x的系数为____。分析含4x的项为4144322311)1324(2)2()()1()1(xxxxxaaaa。所以,4x的系数为2。5.行列式600300301395200199204100103__________。分析031521413100100030015200141003260030030139520019920410010322321ccccc20005548)1(110000155148310031312cc。二、计算下列各题:1.计算63123112115234231D。解2170555011704231223141312rrrrrrD217555100217555117)1(13111rr301755)1(131。第6页共10页2.设4321630211118751D,求44434241AAAA的值。解将D按第4行展开:444342414321AAAAD。将D的第4行元素分别换为1,1,1,1,则44434241AAAA01111630211118751.解法二0444342414424432342224121AAAAAaAaAaAa。作业,第20页,习题1.32.已知pcbapcbapcbapcbaD4443332221114,求.41312111AAAA解将4D按第1列展开:.4143132121114AaAaAaAaD将4D的第1列的元素分别换成1,1,1,1,则.011114433221141312111pcbpcbpcbpcbAAAA第7页共10页3.计算4443332225432543254325432D。解3333222211114321543154315431111154325432ccccD(由范德蒙行列式)5760453534151413120)()()()()()(.作业,第20页,习题1.31(6)3333222243244433322243214321432111114324324321432143214321cccD(由范德蒙行列式).28834242314131224)()()()()()(4.计算abbaababaDn0000000000000000解将行列式按第1列展开:111110000000000)1(0000000000)1(nnnnbabbabbabaabaaDnnnnnnbabbaa1111)1()1(。第8页共10页作业,第13页,习题1.28.baaaaaann2121100010001222212122111000100010001nnnnnaaabaaarararar.22221naaab5.计算1111121111211112nD。解111312131123111321nnnncccDnn300003000030111311312nrrrrrrn1)3(]3[nn.第9页共10页作业,第12页,习题1.22..11100001000010333112331132311332113331123333233332333321413124321rrrrrrcccc6..6133303330010000243333333001000024333333333233331343231ccrrrr第19页,习题1.3,1(3)11111111111111111111111114321cccc100212221)1)(1(100021202210111111141312rrrrrr]4)1[()1(1221)1()1(22332).3()1()32()1(3226.设齐次线性方程组0)12(02)12(02)1(3213213221xkkxkxxxkxxxkx有非零解,求k的值。解因为方程组有非零解,所以其系数行列式为零,即12111)1(11012101121221212112332132kkkkkkcckkkkk0)2(22kkkk,从而得0k或2k.第10页共10页作业,第24页,习题1.42.当为何值时,齐次线性方程组0200321321321xxxxxxxxx有非零解?解因为方程组有非零解,所以其系数行列式为零,即.0)2)(1(211)1()1(2111101021111112121rr从而得1或2.