第20章数据的整理与初步处理全章教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第20章数据的整理与初步处理一.教学内容:§21.1算术平均数与加权平均数§21.2平均数、中位数和众数的选用[学习目标]⑴理解平均数的概念和意义,会计算一组数据的算术平均数和加权平均数.⑵能利用计算器计算一组数据的平均数.⑶在具体情境中理解加权平均数的概念,体会“权”的意义,知道算术平均数与加权平均数的联系与区别.⑷理解中位数、众数的概念和意义,会求一组数据的中位数、众数.二.重点、难点:1.重点:⑴加权平均数的计算方法.⑵掌握中位数、众数等数据代表的概念.2.难点:⑴加权平均的原理.⑵选择恰当的数据代表对数据做出判断.三.知识梳理:1.算术平均数的意义如果有n个数:,,…,那么这组数据的平均数=,这个平均数叫做算术平均数.平均数是我们日常生活中经常用到的、比较熟悉的的概念,如平均分、平均身高、平均体重、平均产量等等,由公式可知,平均数与给出的一组数据中的每一个数的大小都有关系,所以平均数是这组数据的“重心”,反映了这组数据的平均状态,是描述一组数据集中趋势的特征数字中最重要的数据,也是衡量一组数据波动大小的基准.2.加权平均数一般地,对于f1个x1,f2个x2,…,fn个xn,共f1+f2+…+fn个数组成的一组数据的平均数为.这个平均数叫做加权平均数,其中f1,f2,…,fn叫做权,这个“权”,含有权衡所占份量的轻重之意,即(i=1,2,…k)越大,表明的个数越多,“权”就越重.加权平均数的计算公式与算术平均数的计算公式,实际上是一回事.一般情况下,当一组数据中有很多数据多次重复出现时,加权平均数的计算公式是算术平均数计算公式的另一种表现形式,用加权平均数公式计算更简便.3.用计算器求平均数.4.扇形统计图的制作⑴扇形统计图:利用圆和扇形来表示总体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的各个部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫扇形统计图.⑵扇形统计图的特点:扇形的大小反映部分占总体的百分比的大小.根据统计图可以直接看出统计对象所占的比例和每部分相对总体的大小.⑶制作步骤:①利用各部分与总体间的百分比关系求出各个扇形的圆心角,计算方法是:圆心角=360°×百分比;②画出表示总体的圆,并在圆上画出表示各部分的扇形的区域,加以标注;③写出所绘制的扇形统计图的名称.扇形统计图利用圆和扇形来表示总体和部分的关系,统计图中圆的大小与具体数据无关.各扇形所占的百分比之和为1.5.中位数与众数①中位数:把一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;②中位数的计算:先将数据按从小到大的顺序重新排列,如果有奇数个数据,则处在最中间的那个数就是中位数;如果有偶数个数据,则处在最中间的两个数据的平均数就是中位数.③众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.④众数的计算:求众数时只要看在一组数中重复出现次数最多的数据就是众数.如果有两个或两个以上数据重复出现的都最多,那么这几个数据都是这组数据的众数.当一组数据中有不少数据多次重复出现时,我们往往关心众数.通常的“最佳”、“最受欢迎”、“最畅销”等等的评选活动都是用投票的方法取众数得到的.6.平均数、中位数和众数的选用⑴平均数、中位数和众数的特点:平均数、中位数、众数都是用来描述一组数据的集中趋势.这三个统计量的各自特点是:平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现频率的考察,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,即当一组数据按从小到大的顺序排列后,最中间的数据为中位数,因此,某些数据的变动对它的中位数没有影响.平均数、中位数、众数从不同的侧面提供了一组数据的面貌,正因为如此,我们把这三种数作为一组数据的代表.⑵平均数、中位数、众数分别表示一组数据的一般水平、中等水平、和多数水平,都能反映一组数据的集中趋势.它们互相之间可能相等也可能不相等,没有固定的大小关系,但是三个统计量不总是有实际意义、总是合适的,它们都有各自的适用范围.这就产生了该选用哪一个统计量的问题了.相比之下,平均数是最常用的指标.由于计算平均数时,要用到每一个数据,所以它对数据的变化比较敏感.有时能获得较多的信息.但当数据中含有极个别特别大或特别小的数据时,它就不能很好地反映一般水平了.这时就要选用其它的统计量或者像歌唱比赛那样去掉一个最高分,去掉一个最低分了.四、典型例题例1:某班第一小组有12人,一次数学测验成绩如下:85、96、74、100、96、85、79、65、74、85、65、80,试计算这12人的数学平均分.分析:最简单的方法就是把12个数据全部加起来,再除以12即可.但是面对这样一组数字相对比较大的数组时,可以想办法,把数字的大小先降下来,这里可以以80为基准,每个数都减去80组成一个新数组,计算出平均数后,再加上80就得到原数组的平均数.解:(解法一)利用平均数公式得:平均分==82(分);(解法二)每个数都减去80后建立新数组为:5、16、-6、20、16、5、-1、-15、-6、5、-15、0,则新数组的平均数为:=2.所以原数组的平均分=80+2=82(分).例2:我校举行文艺演出,由参加演出的10个班各派一名同学担任评委,每个节目演出后的得分取各个评委所给分的平均数,下面是各评委给七年级三班一个节目的分数.评委编号12345678910评分7.207.257.007.1010.007.307.207.106.207.15⑴该节目的得分是多少分?此得分能否反映该节目的水平?⑵你对5号和9号评委的给分有什么看法?⑶你认为怎样计算该节目的分数比较合理?为什么?分析:本题涉及到关于样本的选取要具有代表性的问题,因为有些数据对样本平均数的影响很大(如5号和9号的数据),因此,为了公正、合理应去掉一个最高分和一个最低分,以减少它们对平均数的负面影响,保证评判的公正性.解:⑴平均分为:=7.35(分).此得分不能反映该节目的水平;⑵5号评委的给分偏高,9号评委的给分偏低,他们都脱离实际,不能公正地代表节目的实际水平;⑶去掉一个最高分和一个最低分,这样可以避免某些特殊数据带来的负面影响,保持评判的公正性.例3:若一组数据的平均数是12,那么另一组数据的平均数是多少?分析:平均数是将各个数据的和除以数据的个数求得的,因此,我们可以先求出已知数据的总数,再找出另一组数据与它的联系,从而求解.解:因为=12.所以=60.所以===15.例4:某人事部经理按下表所示的五个方面给应聘者记分,每一方面均以10分为满分,如果各方面的权数及四个应征者得分如下(单位:分),问谁受聘的可能性最大?条件权数张三李四何五白六学历157988经验158778社交76854效率86567外貌55678分析:谁受聘就应看谁的分数高,只要应用加权平均数分别计算各人的平均分,比较大小就可以了.解:张三的平均分==6.8(分);李四的平均分==7.32(分);何五的平均分==6.86(分);白六的平均分=7.28(分).平均分结果显示李四的分数最高,所以李四受聘的可能性最大.例5:下表是某班20名学生的一次语文测验成绩统计表:成绩(分)5060708090人数(人)23xy2若20名学生的平均成绩是72分,请根据上表求x、y的值.分析:这里有两个未知量,就应得到关于它们的两个等量关系,不难发现,一个是从总人数方面,另一个是从平均数方面得到两个等量关系,从而列方程组进行求解.解:由题意得:解得例6:如图,这是某晚报“百姓热线”一周内接热线电话的统计图,其中有关环境保护问题的电话最多,共70个,请回答下列问题.⑴本周“百姓热线”共接到热线电话多少个?⑵根据以上数据绘成扇形统计图.分析:学会读图获取信息是关键.图中“环境保护问题的电话”达35%,共70个,可求出“百姓热线”电话的总数,再根据各种电话所占的百分比计算出扇形圆心角的度数.解:⑴70÷35%=200,即本周“百姓热线”共接到热线电话200个;⑵分别计算出其他项目在扇形统计图中的圆心角的度数:奇闻轶事:360O×5%=18°;其他投拆:360°×15%=54O;道路交通:360°×20%=72O;环境保护:360°×35%=126°;房产建筑:360°×15%=54°;表扬建议:360°×10%=36°.画扇形统计图,如图所示.例7:为了培养学生的环境保护意识,某校组织课外小组对该市做空气含尘调查,下面是一天每隔2小时测得的数据如下:0.03,0.04,0.02,0.03,0.04,0.01,0.03,0.03,0.04,0.05,0.01,0.03.(单位:克/立方米)⑴求出这组数据的众数和中位数.⑵若国家环保局对大气飘尘的要求为平均值不超过每立方米0.025克,问这天该城市的空气是否符合国家环保局的要求?分析:⑴这组数据的众数就是出现次数最多的数据,是0.03;中位数需按从小到大的顺序排列,然后取中间两个数的平均数即是中位数.⑵能否符合要求,关键是看平均数与0.025的大小,若平均数小于0.025就符合,否则,就不符合.解:⑴由众数的定义和题意知这组数据中0.03出现的次数最多,故这组数据的众数是0.03.将这组数据按从小到大的顺序排列得到:0.01,0.01,0.02,0.03,0.03,0.03,0.03,0.03,0.04,0.04,0.04,0.05.其中最中间的两个数据都是0.03,所以这组数据的中位数是0.03.⑵这天测得的数据的平均数为:==0.03.也就是说这天城市的空气飘尘的平均值为0.03克/立方米,大于国家环保局的规定0.025克/立方米,所以这天该城市的空气不符合国家环保局要求.例8:某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532⑴求这15位营销人员该月销售量的平均数、中位数和众数;⑵假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请制定一个比较合理的销售定额,并说明理由.分析:平均数受极个别数据影响,而中位数和众数不受极个别数据影响.根据这些知识对本题进行解答即可.解:⑴平均数为:=320(件);中位数是210件,众数是210件.⑵不合理.因为15人中有13人的销售额达不到320件,320件虽然是这组数据的平均数,但它受1800件这个特殊值的影响,使它不能反映营销人员的一般水平.而中位数反映的一组数据的中等水平,众数反映的是一组数据的大多数的水平,所以把每位营销员的月销售额定为210件比较合适.例9:如图,公园里有甲、乙两群游客正在做团体游戏,甲群游客的年龄分别是12,12,12,13,14,15,16,16,27;乙群游客的年龄分别为:3,4,4,5,5,6,6,6,55,60.⑴分别求出两群游客年龄的平均数、众数和中位数.⑵甲、乙两群游客年龄的平均数能代表他们各自的年龄特征吗?如果不能代表,那么哪个数据能代表?分析:我们把一组数据中其值过大(或过小)的数据看作异常数(或异常值),如本例中乙群游客的55和60就是异常数,有异常数时,其平均数可能相差较大,这时用中位数或众数来描述这组数据的一般水平比较合适.解:⑴甲群游客:平均数=≈15(岁),众数是12岁,中位数是14岁.乙群游客:平均数==15.4(岁),众数是6岁,中位数是5.5岁.⑵甲群游客年龄的平均数能代表他们的年龄特征,乙群游客年龄平均数不能代表他们的年龄特征.用中位数或众数来代表他们各自的年龄特征比较合适.五、课堂小结:请同学们回顾我们这节课学习了什么知识?用自已的语言概括出来。六、布置作业:练习册七、板书设计1、平均数2、加权平均数3、中位数4、众数例1例2例3一.教学内容:§21.3极差、方差与标准差第21章数据的整理与初步处理小结与复习二.重点、难点:1

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功