一、填空题1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙_________小时可追上甲.2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有_________米.3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用_________分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们._________小可以追上他们?5.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙.若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙.问甲、乙两人每秒钟各跑_________米,_________米.6.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小明骑自行车的速度是_________米/分.7.甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,_________秒两马相距70米?8.上午8时8分,小明骑自行车从家里出发.8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰是8千米,这时是_________时_________分.9.从时钟指向4点开始,再经过_________分钟,时针正好与分针重合.10.一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距_________千米.二、解答题。11.一只狗追赶一只野兔,狗跳5次的时间兔子能跳6次,狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子?12.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米?13.一架敌机侵犯我领空,我机立即起飞迎击,在两机相距50千米时,敌机扭转机头以每分15千米的速度逃跑,我机以每分22千米的速度追击,当我机追至敌机1千米时与敌机激战,只用了半分就将敌机击落.敌机从扭头逃跑到被击落共用了多少分?14.甲、乙两人环绕周长400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇,如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少?追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马。例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米。例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-16)]千米,甲乙两地相距60千米。由此推知追及时间=[10×(22-16)+60]÷(30-10)=120÷20=6(小时)答:解放军在6小时后可以追上敌人。例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。解这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米。例5兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?解要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)答:家离学校有900米远。例6孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。所以步行1千米所用时间为1÷[9-(10-5)]=0.25(小时)=15(分钟)跑步1千米所用时间为15-[9-(10-5)]=11(分钟)跑步速度为每小时1÷11/60=5.5(千米)答:孙亮跑步速度为每小时5.5千米。参考答案与试题解析一、填空题(共10小题,每小题0分,满分0分)1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙2小时可追上甲.考点:追及问题.1923992分析:要求乙几小时可追上甲,先要求出甲比乙多行的路程,用4×4即可得出;然后求出乙每小时比甲多行的距离,为(12﹣4)千米,用多行的路程除以速度差即可得出问题答案.解答:解:4×4÷(12﹣4)=2(小时);答:乙2小时可追上甲.故答案为:2.点评:此题属于典型的追及问题,根据题意,用“多行的路程÷速度差=追及时间”即可得出结论.2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有1500米.考点:追及问题.1923992分析:根据题意,每分钟多走75﹣50=25米,可以少走10分钟,而原来10分钟可以走50×10米,因此75米速度走的时候,需要走50×10÷(75﹣50)分钟才可以补回这段路程,因此有:全程=50×10÷(75﹣50)×75=1500米.解答:解:小张走的距离是:50×10÷(75﹣50)×75=1500(米).答:小张家到公园有1500米.故填:1500.点评:根据追及问题很容易解决此类问题,也可以把小张家到公园的距离为“1”,类比工程问题列式为10÷(﹣).3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用15分钟可赶上父亲?考点:追及问题.1923992分析:此题属于行程问题,把总路程看作单位“1”,父亲用40分钟,则每分钟走,儿子用30分钟,则每分钟走,父亲比儿子早5分钟离家,则父亲多走×5,因为儿子每分钟比父亲多走(﹣),根据“路程之差÷速度之差=追及时间”,代入数字,即可得出答案.解答:解:(×5)÷(﹣),=÷,=15(分钟);答:儿子用15分钟可赶上父亲.故答案为:15.点评:此题属于行程问题,做此题的关键是把总路程看做单位“1”,然后根据“路程之差÷速度之差=追及时间”,代入数字,即可得出结论.4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们.0.6小可以追上他们?考点:追及问题.1923992分析:小分队出发5.5个小时,实际只走了5个小时,是5×6=30千米.利用速度差的关系式,得出,追的路程靠速度差来完成.需要30÷(56﹣6)=3÷5=0.6小时.解答:解:解法一:6×(5.5﹣0.5)÷(56﹣6)=0.6(小时).解法二:设x小时可以追上他们.56x=6×(5.5﹣0.5)+6x56x=30+6xx=0.6;答:通讯员0.6小时可以追上他们.点评:此题属于追及问题,主要的一步是利用速度差的关系式来求.5.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙.若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙.问甲、乙两人每秒钟各跑6米,4米.考点:追及问题.1923992分析:根据题意,甲跑5秒钟可追上乙,即5秒追10米,所以每秒追10÷5=2米,乙先跑2秒则追了4秒,即4×2=8米,也就是乙2秒8米,再根据题意解答即可.解答:解:由题意可得,乙的速度是:10÷5×4÷2=4(米/秒),那么甲的速度是:(4×5+10)÷5=6(米/秒).故填:6,4.点评:根据题意,由追及问题解答即可.6.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小明骑自行车的速度是125米/分.考点:追及问题.1923992分析:根据题干可知:小明和小强走的路程都是1000米,根据路程÷速度=时间,可以求出小明走的总时间从而得出小强骑自行车所用的时间,由此解决问题即可.解答:解:1000÷50=20(分钟),20﹣12=8(分钟),1000÷8=125(米/分).小明骑自行车的速度是125米/分.点评:此题抓住追及问题中速度不同,所以行驶的时间不同,但是行驶的路程相同.7.甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,60秒两马相距70米?考点:追及问题.1923992分析:已知乙马速度比甲马快,最后两马相距70米.可知最后乙马领先甲马70米.求出追击距离,速度差,就可求得追击时间.解答:解:出发后60秒.相距70米时,乙马在前,甲马在后,追及距离为50+70=120(米),速度差为12﹣10=2(米),追及时间为120÷2=60(秒);答:60秒两马相距70米.故答案为:60.点评:此题考查追及距离,速度差,追及时间三者之间的关系.8.上午8时8分,小明骑自行车从家里出发.8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰是8千米,这时是8时32分.考点:追及问题.1923992分析:分别算出走相同的路程,所用时间不同,找出爸爸和小明的速度比,由速度比找出时间差,求得速度,进一步利用路程、速度、时间三者之间的关系解答问题.解答:解:1